EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM

被引:220
作者
CHEN, GY [1 ]
机构
[1] UNIV PISA,DEPT MATH,I-56100 PISA,ITALY
关键词
VARIATIONAL INEQUALITIES; VECTOR EXTREMUM PROBLEMS; EXISTENCE THEOREMS; CONVEXITY; COERCIVITY;
D O I
10.1007/BF00940320
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A vector variational inequality is studied. The paper deals with existence theorems for solutions under convexity assumptions and without convexity assumptions.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 13 条
[1]   SOME FURTHER GENERALIZATIONS OF KNASTER-KURATOWSKI-MAZURKIEWICZ THEOREM AND MINIMAX INEQUALITIES [J].
BARDARO, C ;
CEPPITELLI, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 132 (02) :484-490
[2]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[3]  
CHEN GY, 1990, Z OPERATIONS RES, V3, P1
[4]  
CHEN GY, 1987, LECTURE NOTES EC MAT, V285
[5]  
De Luca M., 1989, NONSMOOTH OPTIMIZATI, P61
[6]  
DUGUDJI J, 1979, ANN SCUOLA NORMALE S, P679
[7]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[8]  
Ferrero O., 1989, Optimization, V20, P167, DOI 10.1080/02331938908843428
[9]  
Giannessi F., 1980, VARIATIONAL INEQUALI, P151
[10]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+