ASYMPTOTIC THEORY FOR PARTLY LINEAR-MODELS

被引:78
作者
GAO, JT [1 ]
机构
[1] UNIV AUCKLAND,DEPT STAT,AUCKLAND,NEW ZEALAND
关键词
ASYMPTOTIC NORMALITY; STRONG CONVERGENCE; LINEAR PROCESS; PARTLY LINEAR MODEL;
D O I
10.1080/03610929508831598
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the model Y-i = x(i)(')beta + g(t(i)) + V-i, 1 less than or equal to i less than or equal to n. Here x(i)=(x(il),...,x(ip))' and t(i) are known and nonrandom design points, beta=(beta(1),...,beta(p)) is an unknown parameter, g(.) is an unknown function over R(1), and V-i is a class of linear processes. Based on g(.) estimated by nonparametric kernel estimation or approximated by a finite series expansion, the asymptotic normalities and the strong consistencies of the LS estimator of beta and an estimator of sigma(0)(2)=EV(1)(2) are investigated.
引用
收藏
页码:1985 / 2009
页数:25
相关论文
共 21 条
[1]   ASYMPTOTIC NORMALITY OF SERIES ESTIMATORS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION-MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (02) :307-345
[2]  
Ansley CF, 1983, APPLIED TIME SERIES, P181
[3]   CONVERGENCE-RATES FOR PARAMETRIC COMPONENTS IN A PARTLY LINEAR-MODEL [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (01) :136-146
[4]   TESTING GOODNESS-OF-FIT VIA NONPARAMETRIC FUNCTION ESTIMATION TECHNIQUES [J].
EUBANK, RL ;
HART, JD ;
LARICCIA, VN .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (12) :3327-3354
[5]   ON THE BIAS IN FLEXIBLE FUNCTIONAL FORMS AND AN ESSENTIALLY UNBIASED FORM - THE FOURIER FLEXIBLE FORM [J].
GALLANT, AR .
JOURNAL OF ECONOMETRICS, 1981, 15 (02) :211-245
[6]  
GAO JT, 1993, SCI CHINA SER A, V1, P14
[7]  
GAO JT, 1994, CHIN APPL PROBAB STA, V1, P96
[8]  
GAO JT, 1992, THESIS CHINA U
[9]  
GAO JT, 1994, TESTING LINEARITY NO
[10]  
HALL P, 1980, MARTINGALE LIMIT THE