A NEW CLASS OF POINT INTERACTIONS IN ONE DIMENSION

被引:58
作者
CHERNOFF, PR [1 ]
HUGHES, RJ [1 ]
机构
[1] BRYN MAWR COLL,DEPT MATH,BRYN MAWR,PA 19010
关键词
D O I
10.1006/jfan.1993.1006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a class of self-adjoint extensions of the symmetric operator -Δ|C∞0(R1\(0)) which correspond formally to perturbations of the Laplacian by pseudopotentials involving δ2. These operators, which provide new examples of generalized point interactions in the sense of Šeba, are defined by the boundary conditions f(hook)(0+) = e-zf(hook)(0), rf(hook)(0+) + f(hook)′(0+) = ez[rf(hook)(0-) + f(hook)′(0-)], for z ∈ C, r ∈ R. We calculate their spectra, resolvents, and scattering matrices, and show that they can be realized as limits of Schrödinger operators with local short-range potentials. © 1993 Academic Press Inc.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 12 条
[1]   SINGULAR PERTURBATIONS AND NONSTANDARD ANALYSIS [J].
ALBEVERIO, S ;
FENSTAD, JE ;
HOEGHKROHN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 252 (AUG) :275-295
[2]  
ALBEVERIO S, 1984, J OPERAT THEOR, V12, P101
[3]  
Albeverio S., 2005, SOLVABLE MODELS QUAN, V2nd ed.
[4]  
[Anonymous], 1966, PERTURBATION THEORY
[5]  
GESZTESY F, 1985, J REINE ANGEW MATH, V362, P28
[6]  
GESZTESY F, 1981, J PHYS A, V20, P5157
[7]   A CLASS OF EXPLICITLY SOLUBLE, LOCAL, MANY-CENTER HAMILTONIANS FOR ONE-PARTICLE QUANTUM-MECHANICS IN 2 AND 3 DIMENSIONS .1. [J].
GROSSMANN, A ;
HOEGHKROHN, R ;
MEBKHOUT, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (09) :2376-2385
[8]  
Reed M., 1975, METHODS MODERN MATH
[9]  
SEBA P, 1987, ANN PHYS-BERLIN, V44, P323, DOI 10.1002/andp.19874990503
[10]  
Seba P., 1986, Reports on Mathematical Physics, V24, P111, DOI 10.1016/0034-4877(86)90045-5