BRANCHING-RULES OF THE ENERGY-SPECTRUM OF ONE-DIMENSIONAL QUASI-CRYSTALS

被引:50
作者
LIU, YY
SRITRAKOOL, W
机构
[1] S CHINA UNIV TECHNOL,DEPT PHYS,GUANGZHOU 510641,PEOPLES R CHINA
[2] CHULALONGKORN UNIV,FAC SCI,FORUM THEORET SCI,BANGKOK 10330,THAILAND
来源
PHYSICAL REVIEW B | 1991年 / 43卷 / 01期
关键词
D O I
10.1103/PhysRevB.43.1110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By means of the renormalization-group approach, we give an analytic explanation for the branching rules of the electronic energy spectrum of the on-site model for one-dimensional Fibonacci quasicrystals, which has been found by numerical simulation previously by Liu and Riklund [Phys. Rev. B 35, 6034 (1987)] and by Karmakar et al. [J. Phys. Condens. Matter 1, 1423 (1989)]. We prove that the energy spectrum has a four-subband global structure and that each subband further trifurcates following a hierarchy of splitting from one to three subsubbands. The occupation probabilities of subbands and the absolute heights of steps that distinguish the subbands in the integrated density of states are analytically obtained.
引用
收藏
页码:1110 / 1116
页数:7
相关论文
共 19 条
[1]   QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES - COMMENT [J].
ELSER, V .
PHYSICAL REVIEW LETTERS, 1985, 54 (15) :1730-1730
[2]  
HE XL, 1988, PHYS REV LETT, V61, P1116
[3]   X-RAY-DIFFRACTION PATTERN OF QUASI-PERIODIC (FIBONACCI) NB-CU SUPERLATTICES [J].
HU, A ;
TIEN, C ;
LI, XJ ;
WANG, YH ;
FENG, D .
PHYSICS LETTERS A, 1986, 119 (06) :313-314
[4]   QUASI-PERIODIC METALLIC MULTILAYERS - GROWTH AND SUPERCONDUCTIVITY [J].
KARKUT, MG ;
TRISCONE, JM ;
ARIOSA, D ;
FISCHER, O .
PHYSICAL REVIEW B, 1986, 34 (06) :4390-4393
[5]   THE ELECTRONIC DENSITY OF STATES OF AN INFINITE ONE-DIMENSIONAL FIBONACCI CHAIN [J].
KARMAKAR, SN ;
CHAKRABARTI, A ;
MOITRA, RK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (08) :1423-1428
[6]   QUASI-PERIODIC LATTICE - ELECTRONIC-PROPERTIES, PHONON PROPERTIES, AND DIFFUSION [J].
KOHMOTO, M ;
BANAVAR, JR .
PHYSICAL REVIEW B, 1986, 34 (02) :563-566
[7]   LOCALIZATION PROBLEM AND MAPPING OF ONE-DIMENSIONAL WAVE-EQUATIONS IN RANDOM AND QUASI-PERIODIC MEDIA [J].
KOHMOTO, M .
PHYSICAL REVIEW B, 1986, 34 (08) :5043-5047
[8]   LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE [J].
KOHMOTO, M ;
KADANOFF, LP ;
TANG, C .
PHYSICAL REVIEW LETTERS, 1983, 50 (23) :1870-1872
[9]   ELECTRONIC-PROPERTIES OF PERFECT AND NONPERFECT ONE-DIMENSIONAL QUASI-CRYSTALS [J].
LIU, YY ;
RIKLUND, R .
PHYSICAL REVIEW B, 1987, 35 (12) :6034-6042
[10]   PROPERTIES OF ONE-DIMENSIONAL QUASI-LATTICES [J].
LU, JP ;
ODAGAKI, T ;
BIRMAN, JL .
PHYSICAL REVIEW B, 1986, 33 (07) :4809-4817