NUMERICAL COMPUTATION OF 3D INCOMPRESSIBLE IDEAL FLUIDS WITH SWIRL

被引:73
作者
GRAUER, R [1 ]
SIDERIS, TC [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,DEPT MATH,SANTA BARBARA,CA 93106
关键词
D O I
10.1103/PhysRevLett.67.3511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate numerically the question of blowup in finite time for the ''swirling flow'' of the three-dimensional incompressible Euler equations. Using rotational symmetry, the Euler equations reduce to a two-dimensional problem which is numerically solved by finite differences. The elliptic equation relating vorticity to velocity is solved with the multigrid method. Calculations were performed with 896 x 640 mesh points.
引用
收藏
页码:3511 / 3514
页数:4
相关论文
共 11 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   SMALL-SCALE STRUCTURE OF THE TAYLOR-GREEN VORTEX [J].
BRACHET, ME ;
MEIRON, DI ;
ORSZAG, SA ;
NICKEL, BG ;
MORF, RH ;
FRISCH, U .
JOURNAL OF FLUID MECHANICS, 1983, 130 (MAY) :411-452
[3]  
CHORIN AJ, 1982, COMMUNN MATH PHYS, V83, P853
[4]  
Hackbusch W., 1985, SPRINGER SERIES COMP, V4
[5]  
Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1
[6]  
Ladyzenskaya O. A., 1968, ZAP NAUCHN SEM LENIN, V7, P126
[7]  
MAJDA A, 1986, COMMUN PURE APPL MAT, V39, P187
[8]   SPONTANEOUS SINGULARITY IN 3-DIMENSIONAL, INVISCID, INCOMPRESSIBLE-FLOW [J].
MORF, RH ;
ORSZAG, SA ;
FRISCH, U .
PHYSICAL REVIEW LETTERS, 1980, 44 (09) :572-575
[9]   COLLAPSING SOLUTIONS TO THE 3-D EULER EQUATIONS [J].
PUMIR, A ;
SIGGIA, E .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (02) :220-241
[10]  
PUMIR A, COMMUNICATION