STABLE INHOMOGENEOUS ITERATIONS OF NONLINEAR POSITIVE OPERATORS ON BANACH-SPACES

被引:4
作者
FUJIMOTO, T [1 ]
KRAUSE, U [1 ]
机构
[1] UNIV BREMEN,W-2800 BREMEN 33,GERMANY
关键词
POSITIVE DISCRETE DYNAMICAL SYSTEMS; NONLINEAR POSITIVE OPERATORS; INHOMOGENEOUS ITERATIONS; STRONG ERGODICITY; HILBERTS PROJECTIVE METRIC;
D O I
10.1137/S0036141091221651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a sequence (f(n))n of nonlinear positive operators on a Banach space which converges to some operator f, conditions are specified under which the inhomogeneous iterates f(n) . f(n-1) . ... . f2 . f1, after normalization, converge to the unique positive and normalized eigenvector of f. This stability result extends, for discrete dynamical systems, the property of strong ergodicity from finite to infinite dimensions.
引用
收藏
页码:1195 / 1202
页数:8
相关论文
共 7 条
[1]   ASYMPTOTIC PROPERTIES FOR INHOMOGENEOUS ITERATIONS OF NONLINEAR OPERATORS [J].
FUJIMOTO, T ;
KRAUSE, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (04) :841-853
[2]  
FUJIMOTO T, 1986, COMPETITION INSTABIL
[3]   WEAK ERGODICITY OF POPULATION EVOLUTION PROCESSES [J].
INABA, H .
MATHEMATICAL BIOSCIENCES, 1989, 96 (02) :195-219
[5]   SOME NONLINEAR WEAK ERGODIC-THEOREMS [J].
NUSSBAUM, RD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (02) :436-460
[6]  
SENETA E, 1980, NONNEGATIVE MATRICES