GLOBAL APPROXIMATION OF PERTURBED HAMILTONIAN DIFFERENTIAL-EQUATIONS WITH SEVERAL TURNING-POINTS

被引:10
作者
GINGOLD, H [1 ]
HSIEH, PF [1 ]
机构
[1] WESTERN MICHIGAN UNIV,DEPT MATH,KALAMAZOO,MI 49008
关键词
D O I
10.1137/0518093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1275 / 1293
页数:19
相关论文
共 26 条
[1]  
BLEISTEIN N, 1967, J MATH MECH, V17, P533
[2]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[3]  
FRIEDRICH KO, 1953, LECTURE NOTES NEW YO
[4]  
FRIEDRICH KO, 1955, IMMNYU218 NEW YORK U
[6]   GLOBAL SIMPLIFICATION OF A SINGULARLY PERTURBED ALMOST DIAGONAL SYSTEM [J].
GINGOLD, H ;
HSIEH, PF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (01) :7-18
[7]   CONTINUOUS TRIANGULARIZATION OF MATRIX FUNCTIONS [J].
GINGOLD, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (04) :709-720
[8]  
GINGOLD H, ASYMPTOTIC DECOMPOSI
[9]   UNIFIED THEORY OF ASYMPTOTIC INTEGRATION [J].
HARRIS, WA ;
LUTZ, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 57 (03) :571-586
[10]   ON THE ADIABATIC THEOREM OF QUANTUM MECHANICS [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1950, 5 (06) :435-439