FOURIER SMOOTHER AND ADDITIVE-MODELS

被引:36
作者
BILODEAU, M [1 ]
机构
[1] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL H3C 3J7,QUEBEC,CANADA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1992年 / 20卷 / 03期
关键词
NONPARAMETRIC REGRESSION; SCATTERPLOT SMOOTHER; ADDITIVE MODEL;
D O I
10.2307/3315313
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose the observations (t(i), y(i)), i = 1,...,n, follow the model E(y\t) = g1(t1) +...+ g(r)(t(r)), where g(j) are unknown functions. The estimation of the additive components can be done by approximating g(j) with a function made up of the sum of a linear fit and a truncated Fourier series of cosines and minimizing a penalized least-squares loss function over the coefficients. This finite-dimensional basis approximation, when fitting an additive model with r predictors, has the advantage of reducing the computations drastically, since it does not require the use of the backfitting algorithm. The cross-validation (CV) [or generalized cross-validation (GCV)] for the additive fit is calculated in a further O(n) operations. A search path in the r-dimensional space of degrees of freedom is proposed along which the CV (GCV) continuously decreases. The path ends when an increase in the degrees of freedom of any of the predictors yields an increase in CV (GCV). This procedure is illustrated on a meteorological data set.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 11 条
[1]  
Becker R. A., 1988, NEW S LANGUAGE
[2]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[3]  
BREIMAN L, 1989, ANN STAT, V17, P510, DOI 10.1214/aos/1176347116
[4]  
BUJA A, 1989, ANN STAT, V17, P563
[5]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[6]   PROJECTION PURSUIT REGRESSION [J].
FRIEDMAN, JH ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :817-823
[7]  
GREEN P, 1985, LECTURE NOTES STATIS, V32, P44
[8]  
Grenander U., 1981, ABSTRACT INFERENCE
[9]  
Hastie T. J., 1990, GEN ADDITIVE MODELS, DOI DOI 10.1201/9780203753781
[10]  
WAHBA G, 1983, J ROY STAT SOC B MET, V45, P133