BUNTING IDENTITY AND MAZUR IDENTITY FOR NON-LINEAR ELLIPTIC-SYSTEMS INCLUDING THE BLACK-HOLE EQUILIBRIUM PROBLEM

被引:38
作者
CARTER, B
机构
关键词
D O I
10.1007/BF01215910
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:563 / 591
页数:29
相关论文
共 30 条
[1]  
BUNTING G, 1983, THESIS U NEW ENGLAND
[2]  
BUNTING G, 1981, UNPUB 2ND P AUSTR MA
[3]   KILLING HORIZONS AND ORTHOGONALLY TRANSITIVE GROUPS IN SPACE-TIME [J].
CARTER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (01) :70-&
[4]   AXISYMMETRIC BLACK HOLE HAS ONLY 2 DEGREES OF FREEDOM [J].
CARTER, B .
PHYSICAL REVIEW LETTERS, 1971, 26 (06) :331-+
[5]  
Carter B., 1979, GENERAL RELATIVITY
[6]  
CARTER B, 1985, LECTURE NOTES PHYSIC, V223, P72
[7]  
CARTER B, 1973, BLACK HOLDS
[8]  
CARTER B, 1979, NATO ADV STUDY I S B, V44
[9]   FIELD-THEORIES WITH AN INFINITE NUMBER OF CONSERVATION-LAWS AND BACKLUND TRANSFORMATIONS IN 2-DIMENSIONS [J].
DEVEGA, HJ .
PHYSICS LETTERS B, 1979, 87 (03) :233-236
[10]   MORE ABOUT NON-LINEAR SIGMA-MODELS ON SYMMETRIC-SPACES [J].
EICHENHERR, H ;
FORGER, M .
NUCLEAR PHYSICS B, 1980, 164 (03) :528-535