ERGODIC THEOREMS FOR WEAKLY INTERACTING INFINITE SYSTEMS AND VOTER MODEL

被引:796
作者
HOLLEY, RA
LIGGETT, TM
机构
[1] UNIV COLORADO,DEPT MATH,BOULDER,CO 80302
[2] UNIV CALIF,DEPT MATH,LOS ANGELES,CA 90024
关键词
D O I
10.1214/aop/1176996306
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:643 / 663
页数:21
相关论文
共 11 条
[1]  
CHOVER J, TO BE PUBLISHED
[2]  
Dobrushin R L, 1971, PROBL PEREDACHI INF, V7, P70
[3]  
GRIFFEATH D, TO BE PUBLISHED
[4]   CONTACT INTERACTIONS ON A LATTICE [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1974, 2 (06) :969-988
[5]  
LIGGET TM, 1972, T AM MATH SOC, V165, P471
[6]   CHARACTERIZATION OF INVARIANT MEASURES FOR AN INFINITE PARTICLE SYSTEM WITH INTERACTIONS [J].
LIGGETT, TM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :433-453
[7]   CHARACTERIZATION OF INVARIANT MEASURES FOR AN INFINITE PARTICLE SYSTEM WITH INTERACTIONS .2. [J].
LIGGETT, TM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 198 (OCT) :201-213
[8]   RECURRENT RANDOM-WALK OF AN INFINITE PARTICLE SYSTEM [J].
SPITZER, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 198 (OCT) :191-199
[9]  
SPITZER F, 1971, RANDOM FIELDS INTERA
[10]  
Stavskaya O.N., 1971, SYST THEORY RES, V20, P75