KELLER CUBE-TILING CONJECTURE IS FALSE IN HIGH DIMENSIONS

被引:75
作者
LAGARIAS, JC
SHOR, PW
机构
关键词
D O I
10.1090/S0273-0979-1992-00318-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
O. H. Keller conjectured in 1930 that in any tiling of R(n) by unit n-cubes there exist two of them having a complete facet in common. O. Perron proved this conjecture for n less-than-or-equal-to 6. We show that for all n greater-than-or-equal-to 10 there exists a tiling of R(n) by unit n-cubes such that no two n-cubes have a complete facet in common.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 9 条
[1]  
Corradi K., 1990, PERIOD MATH HUNGAR, V21, P91
[2]   On single and multiple covering of n-dimensional space with a cube lattice. [J].
Hajos, G .
MATHEMATISCHE ZEITSCHRIFT, 1942, 47 :427-467
[3]  
Hajs G., 1950, CAS PEST MAT FYS, V74, P157
[4]  
KELLER OH, 1930, J REINE ANGEW MATH, V6163, P231
[5]  
Minkowski H., 1907, DIOPHANTISCHE APPROX
[8]   ALGEBRAIC TILING [J].
STEIN, SK .
AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (05) :445-462
[9]  
Szabo S., 1986, PERIOD MATH HUNG, V17, P265