Structural studies assessed interactions between the amino-terminal peptide (FP-I; 23 residues 519-541) of the glycoprotein 41 000 (gp4l) of Human Immunodeficiency Virus Type-1 (HIV-1) and human erythrocyte membranes and simulated membrane environments. Peptide binding was examined at sub-hemolytic (approx. < 5-mu-M) and hemolytic (greater-than-or-equal-to 5-mu-M) doses (Mobley et al. (1992) Biochim. Biophys. Acta 1139, 251-256), using circular dichroism (CD) and Fourier-transform infrared (FTIR) measurements with FP-I, and electron spin resonance (ESR) studies employing FP-I spin-labeled at either the amino-terminal alanine (FP-II; residue 519) or methionine (FP-III; position 537). In the sub-lytic regime, FP-I binds to both erythrocyte lipids and dispersions of SDS with high alpha-helicity. Further, ESR spectra of FP-II labeled erythrocyte ghosts indicated peptide binding to both lipid and protein. In ghost lipids, FP-II was monomeric and exhibited low polarity and rapid, anisotropic motion about its long molecular axis (i.e., alpha-helical axis), with restricted motion away from this axis. The spin-label at the amino-terminal residue (Ala-519) is insensitive to the aqueous broadening agent chromium oxalate and buried within the hydrophobic core of the membrane; the angle that the alpha-helix (residues 519-536) makes to the normal of the bilayer plane is either 0-degrees or 40-degrees. Contrarily, ESR spectra of ghost lipids labeled with sub-lytic doses of FP-III indicated high mobility and polarity for the reporter group (Met-537) at the aqueous-membrane interface, as well as extreme sensitivity to chromium oxalate. At lytic FP-I doses, CD and FTIR showed both alpha-helix and beta-structure for peptide in ghost lipids or detergent, while ESR spectra of high-loaded FP-II in ghost membranes indicated peptide aggregates. Membrane aggregates of FP-I may be involved in hemolysis, and models are suggested for N-terminal gp4l peptide participation in HIV-induced fusion and cytolysis.