CONVERGENCE OF SPECTRAL METHODS FOR NONLINEAR CONSERVATION-LAWS

被引:310
作者
TADMOR, E [1 ]
机构
[1] NASA,LANGLEY RES CTR,INST COMP APPLICAT SCI & ENGN,HAMPTON,VA 23665
关键词
D O I
10.1137/0726003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:30 / 44
页数:15
相关论文
共 15 条
[1]  
ABARBANEL D, 1986, NUMERICAL METHODS FL, P129
[2]   SYSTEMS OF CONSERVATION EQUATIONS WITH A CONVEX EXTENSION [J].
FRIEDRICHS, KO ;
LAX, PD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (08) :1686-+
[3]  
Gottlieb D., 1977, CBMS REGIONAL C SERI, V26
[4]   A RANDOM CHOICE FINITE-DIFFERENCE SCHEME FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (02) :289-315
[5]   STABILITY OF THE FOURIER METHOD [J].
KREISS, HO ;
OLIGER, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (03) :421-433
[6]  
LAX PD, 1972, ABMS NSF REGIONAL C, V11
[7]  
MAJDA A, 1978, MATH COMPUT, V32, P1041, DOI 10.1090/S0025-5718-1978-0501995-4
[8]   SYSTEMS OF CONSERVATION-LAWS OF MIXED TYPE [J].
MOCK, MS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (01) :70-88