CONTINUOUS IN-VITRO EVOLUTION OF BACTERIOPHAGE RNA-POLYMERASE PROMOTERS

被引:25
作者
BREAKER, RR
BANERJI, A
JOYCE, GF
机构
[1] SCRIPPS RES INST, DEPT MOLEC BIOL, LA JOLLA, CA 92037 USA
[2] Scripps Res Inst, DEPT CHEM, LA JOLLA, CA 92037 USA
关键词
D O I
10.1021/bi00205a037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.
引用
收藏
页码:11980 / 11986
页数:7
相关论文
共 26 条
[1]   SPECIFIC BINDING OF MONOMERIC BACTERIOPHAGE-T3 AND BACTERIOPHAGE-T7 RNA-POLYMERASES TO THEIR RESPECTIVE COGNATE PROMOTERS REQUIRES THE INITIATING RIBONUCLEOSIDE TRIPHOSPHATE (GTP) [J].
BASU, S ;
MAITRA, U .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 190 (03) :425-437
[2]   EMERGENCE OF A REPLICATING SPECIES FROM AN IN-VITRO RNA EVOLUTION REACTION [J].
BREAKER, RR ;
JOYCE, GF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :6093-6097
[3]  
BREAKER RR, 1993, IN PRESS SEP P NATO
[4]  
BUTLER ET, 1982, J BIOL CHEM, V257, P5772
[5]   CLONING AND EXPRESSION OF THE GENE FOR BACTERIOPHAGE-T7 RNA-POLYMERASE [J].
DAVANLOO, P ;
ROSENBERG, AH ;
DUNN, JJ ;
STUDIER, FW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :2035-2039
[6]   HIERARCHY OF BASE-PAIR PREFERENCE IN THE BINDING DOMAIN OF THE BACTERIOPHAGE-T7 PROMOTER [J].
DIAZ, GA ;
RASKIN, CA ;
MCALLISTER, WT .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 229 (04) :805-811
[7]   COMPLETE NUCLEOTIDE-SEQUENCE OF BACTERIOPHAGE-T7 DNA AND THE LOCATIONS OF T7 GENETIC ELEMENTS [J].
DUNN, JJ ;
STUDIER, FW .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :477-535
[8]   ISOTHERMAL, INVITRO AMPLIFICATION OF NUCLEIC-ACIDS BY A MULTIENZYME REACTION MODELED AFTER RETROVIRAL REPLICATION [J].
GUATELLI, JC ;
WHITFIELD, KM ;
KWOH, DY ;
BARRINGER, KJ ;
RICHMAN, DD ;
GINGERAS, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (05) :1874-1878
[9]   INTERACTIONS OF T7 RNA-POLYMERASE WITH T7 LATE PROMOTERS MEASURED BY FOOTPRINTING WITH METHIDIUMPROPYL-EDTA-IRON(II) [J].
GUNDERSON, SI ;
CHAPMAN, KA ;
BURGESS, RR .
BIOCHEMISTRY, 1987, 26 (06) :1539-1546
[10]  
HORWITZ MSZ, 1988, J BIOL CHEM, V263, P14724