Plant NHX cation/proton antiporters

被引:231
作者
Pilar Rodriguez-Rosales, M. [1 ]
Galvez, Francisco J. [1 ]
Huertas, Raul [1 ]
Nieves Aranda, M. [1 ]
Baghour, Mourad [1 ]
Cagnac, Olivier [1 ]
Venema, Kees [1 ]
机构
[1] CSIC, Estn Expt Zaidin, Dept Biochem Cellular & Mol Biol Plants, Granada, Spain
关键词
NHX-type ion transporters; pH regulation; plant membrane vesicles; potassium homeostasis; salt tolerance;
D O I
10.4161/psb.4.4.7919
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although physiological and biochemical data since long suggested that Na+/H+ and K+/H+ antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na+ accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K+ homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 115 条
[1]   Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast [J].
Ali, R ;
Brett, CL ;
Mukherjee, S ;
Rao, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (06) :4498-4506
[2]   Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J].
Apse, MP ;
Sottosanto, JB ;
Blumwald, E .
PLANT JOURNAL, 2003, 36 (02) :229-239
[3]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[4]   Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress [J].
Ballesteros, E ;
Blumwald, E ;
Donaire, JP ;
Belver, A .
PHYSIOLOGIA PLANTARUM, 1997, 99 (02) :328-334
[5]   SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity [J].
Batelli, Giorgia ;
Verslues, Paul E. ;
Agius, Fernanda ;
Qiu, Quansheng ;
Fujii, Hiroaki ;
Pan, Songqin ;
Schumaker, Karen S. ;
Grillo, Stefania ;
Zhu, Jian-Kang .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (22) :7781-7790
[6]   SALT TOLERANCE IN SUSPENSION-CULTURES OF SUGAR-BEET - INDUCTION OF NA+/H+ ANTIPORT ACTIVITY AT THE TONOPLAST BY GROWTH IN SALT [J].
BLUMWALD, E ;
POOLE, RJ .
PLANT PHYSIOLOGY, 1987, 83 (04) :884-887
[7]   NA+/H+ ANTIPORT IN ISOLATED TONOPLAST VESICLES FROM STORAGE TISSUE OF BETA-VULGARIS [J].
BLUMWALD, E ;
POOLE, RJ .
PLANT PHYSIOLOGY, 1985, 78 (01) :163-167
[8]   Sodium transport in plant cells [J].
Blumwald, E ;
Aharon, GS ;
Apse, MP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :140-151
[9]   The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Levi, BP ;
Patel, FI ;
Stevens, TH .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4277-4294
[10]   The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking [J].
Brett, CL ;
Tukaye, DN ;
Mukherjee, S ;
Rao, RJ .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (03) :1396-1405