SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS

被引:1260
作者
MALFLIET, W
机构
关键词
D O I
10.1119/1.17120
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A method is proposed for obtaining traveling-wave solutions of nonlinear wave equations that are essentially of a localized nature. It is based on the fact that most solutions are functions of a hyperbolic tangent. This technique is straightforward to use and only minimal algebra is needed to find these solutions. The method is applied to selected cases.
引用
收藏
页码:650 / 654
页数:5
相关论文
共 19 条
[1]  
ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
[2]   NON-ABELIAN PSEUDOPOTENTIALS AND CONSERVATION-LAWS OF REACTION-DIFFUSION EQUATIONS [J].
ALEXEYEV, AA ;
KUDRYASHOV, NA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (06) :L255-L260
[3]  
BURGERS J, 1974, NONLINEAR DIFFUSION, P9
[4]  
DOLD A, 1974, LECTURES NOTES MATH, V515, P40
[5]  
Drazin P, 1989, SOLITONS INTRO, P20
[6]  
EILSENBERGER G, 1983, SOLITONS, P140
[7]   AN ELEMENTARY INTRODUCTION TO SOLITONS [J].
GRATTON, J ;
DELELLIS, R .
AMERICAN JOURNAL OF PHYSICS, 1989, 57 (08) :683-687
[8]  
GRAY P, 1990, CHEM OSCILLATIONS IN, P292
[9]  
Hasegawa A., 1975, PLASMA INSTABILITIES, P190
[10]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822