QUANTUM DISSIPATION IS A DYNAMICAL COLLECTIVE EFFECT

被引:14
作者
GRUVER, JL [1 ]
ALIAGA, J [1 ]
CERDEIRA, HA [1 ]
PROTO, AN [1 ]
机构
[1] UNIV BUENOS AIRES,CTR REG NORTE,SISTEMAS DINAMICOS GRP,VICENTE LOPEZ,ARGENTINA
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevE.51.6263
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the dissipative dynamics observed in a small quantum system coupled to a large one (the bath) is a consequence of increasing the size of the bath. We exemplify this effect with a quantum harmonic oscillator coupled to N harmonic oscillators. We find that revivals in the level population exist and give an estimate of their period. For large values of N, the level population decays exponentially coming into thermal equilibrium. We conclude that quantum dissipation is a dynamical collective effect. Finally, we discuss extensions beyond the harmonic oscillator. © 1995 The American Physical Society.
引用
收藏
页码:6263 / 6266
页数:4
相关论文
共 31 条
[1]   BROWNIAN MOTION OF A QUANTUM OSCILLATOR [J].
AGARWAL, GS .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (02) :739-+
[2]   INFORMATION-THEORETIC AND WIGNER-FUNCTION APPROACHES TO THE NONCLASSICAL STATE DYNAMICS FOR THE VARIABLE-FREQUENCY HARMONIC-OSCILLATOR [J].
ALIAGA, J ;
CRESPO, G ;
PROTO, AN .
PHYSICAL REVIEW LETTERS, 1993, 70 (04) :434-436
[3]   NONZERO TEMPERATURE 2-MODE SQUEEZING FOR TIME-DEPENDENT 2-LEVEL SYSTEMS [J].
ALIAGA, J ;
GRUVER, JL ;
PROTO, AN ;
CERDEIRA, HA .
PHYSICS LETTERS A, 1994, 185 (04) :355-361
[4]  
BIALYNICKIBIRUL.I, 1976, ANN PHYS-NEW YORK, V100, P62
[5]   IRREVERSIBLE BEHAVIOR OF A QUANTUM HARMONIC-OSCILLATOR COUPLED TO A HEAT BATH [J].
BRAUN, E .
PHYSICA A, 1985, 129 (02) :262-301
[6]   QUANTUM BROWNIAN PARTICLE AND MEMORY EFFECTS [J].
BRINATI, JR ;
MIZRAHI, SS ;
PIMENTEL, BM .
PHYSICAL REVIEW A, 1991, 44 (12) :7923-7928
[7]   QUANTUM TUNNELLING IN A DISSIPATIVE SYSTEM [J].
CALDEIRA, AO ;
LEGGETT, AJ .
ANNALS OF PHYSICS, 1983, 149 (02) :374-456
[8]  
DEBROGLIE L, 1960, NONLINEAR WAVE MECHA
[9]   CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01) :1-112
[10]   THE QUANTUM-MECHANICAL HARMONIC-OSCILLATOR - MARKOVIAN LIMIT AND COMMUTATION RELATIONS [J].
ECKHARDT, W .
PHYSICS LETTERS A, 1986, 114 (02) :75-76