A DYNAMICAL PARTITION-FUNCTION FOR THE LORENTZ GAS

被引:11
作者
MORRISS, GP [1 ]
RONDONI, L [1 ]
COHEN, EGD [1 ]
机构
[1] ROCKEFELLER UNIV,NEW YORK,NY 10021
关键词
ENSEMBLES; PERIODIC ORBIT EXPANSION; SINGULAR ORBITAL MEASURES;
D O I
10.1007/BF02178352
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we introduce a dynamically defined partition function for the Lorentz gas and investigate its connection with the classical ensembles and the phase-space probability measure derived from periodic orbit expansions. Numerical evidence is presented to support the equivalence of these measures and to link them to the thermodynamic quantities for the Lorentz gas. This also suggests a new dynamical basis for the assumption of equal a priori probabilities in the microcanonical ensemble.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1970, RUSS MATH SURV, DOI [10.1070/RM1970v025n02ABEH003794, DOI 10.1070/RM1970V025N02ABEH003794]
[2]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[3]   Investigation of the Lorentz gas in terms of periodic orbits [J].
Cvitanovic, Predrag ;
Gaspard, Pierre ;
Schreiber, Thomas .
CHAOS, 1992, 2 (01) :85-90
[4]  
Evans D. J., 1990, STAT MECH NONEQUI LI
[5]   RUELLE CLASSICAL RESONANCES AND DYNAMIC CHAOS - THE 3-DISK AND 4-DISK SCATTERERS [J].
GASPARD, P ;
RAMIREZ, DA .
PHYSICAL REVIEW A, 1992, 45 (12) :8383-8397
[6]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1988, 37 (05) :1711-1724
[7]   PERIODIC-ORBITS AND A CORRELATION-FUNCTION FOR THE SEMICLASSICAL DENSITY OF STATES [J].
HANNAY, JH ;
DEALMEIDA, AMO .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3429-3440
[8]   PERIODIC ORBIT EXPANSIONS FOR THE LORENTZ GAS [J].
MORRISS, GP ;
RONDONI, L .
JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (3-4) :553-584
[10]  
Ruelle D., 1978, THERMODYNAMIC FORMAL