ORTHOGONALIZING WEIGHTS OF TCHEBYCHEV SETS OF POLYNOMIALS

被引:22
作者
KWON, KH
KIM, SS
HAN, SS
机构
[1] Department of Mathematics, KAIST, Seoul, 130-650, P.O. Box 150, Cheongryang
关键词
D O I
10.1112/blms/24.4.361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize distributions with respect to which the members of a Tchebychev set of polynomials are orthogonal when they satisfy differential equations with polynomial coefficients. As an application, we find a real weight of bounded variation with support in [0, infinity) for Bessel polynomials.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 16 条
[1]  
BOAS RP, 1949, B AM MATH SOC, V45, P399
[2]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
DURAN AJ, IN PRESS ROCKY MOUNT
[5]  
Kim S. S., 1991, DIFFERENTIAL INTEGRA, V4, P601
[6]  
KIM SS, 1990, RESULTS MATH, V18, P273
[7]  
KOMATSU H, 1971, J FAC SCI U TOKYO 1, V18, P379
[8]  
Komatsu H., 1973, LECT NOTES MATH, P3
[9]  
KRALL AM, 1978, SIAM J MATH ANAL, V9, P600, DOI 10.1137/0509041
[10]   THE BESSEL POLYNOMIAL MOMENT PROBLEM [J].
KRALL, AM .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4) :105-107