THERMODYNAMIC LIMIT OF THE GINZBURG-LANDAU EQUATIONS

被引:37
作者
COLLET, P
机构
[1] Centre de Physique Théorique, Laboratoire CNRS UPR 14, Ecole Polytechnique, Palaiseau cedex
关键词
D O I
10.1088/0951-7715/7/4/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of a global semiflow for the complex Ginzburg-Landau equation on the space of bounded functions in infinite domain. This semiflow is proven to exist in dimension 1 and 2 for any parameter values of the standard cubic Ginzburg-Landau equation. In dimension 3 we need some restrictions on the parameters but cover nevertheless some part of the Benjamin-Feir unstable domain.
引用
收藏
页码:1175 / 1190
页数:16
相关论文
共 24 条
[1]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[2]   SPACE-TIME BEHAVIOR IN PROBLEMS OF HYDRODYNAMIC TYPE - A CASE-STUDY [J].
COLLET, P ;
ECKMANN, JP .
NONLINEARITY, 1992, 5 (06) :1265-1302
[3]  
COLLET P, 1990, COMMUN MATH PHYS, V132, P135
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]  
DUAN J, 1993, FRONTS DOMAIN WALLS
[6]   GLOBAL EXISTENCE THEORY FOR A GENERALIZED GINZBURG-LANDAU EQUATION [J].
DUAN, JQ ;
HOLMES, P ;
TITI, ES .
NONLINEARITY, 1992, 5 (06) :1303-1314
[7]  
Eckhaus W., 1965, STUDIES NONLINEAR ST
[8]  
Friedman A., 1969, PARTIAL DIFFERENTIAL
[9]   DIMENSION OF THE ATTRACTORS ASSOCIATED TO THE GINZBURG-LANDAU PARTIAL-DIFFERENTIAL EQUATION [J].
GHIDAGLIA, JM ;
HERON, B .
PHYSICA D, 1987, 28 (03) :282-304
[10]   LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS [J].
HUERRE, P ;
MONKEWITZ, PA .
ANNUAL REVIEW OF FLUID MECHANICS, 1990, 22 :473-537