ABOVEGROUND VEGETATIVE DEVELOPMENT AND GROWTH OF WINTER-WHEAT AS INFLUENCED BY NITROGEN AND WATER AVAILABILITY

被引:33
作者
WILHELM, WW
MCMASTER, GS
RICKMAN, RW
KLEPPER, B
机构
[1] USDA ARS, GREAT PLAINS SYST RES UNIT, FT COLLINS, CO 80522 USA
[2] USDA ARS, COLUMBIA PLATEAU CONSERVAT RES CTR, PENDLETON, OR 97801 USA
关键词
D O I
10.1016/0304-3800(93)90016-L
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Assessing the influence of nitrogen and water availability on development and growth of individual organs of winter wheat (Triticum aestivum L.) is critical in evaluating the response of wheat to environmental conditions. We constructed a simulation model (SHOOTGRO 2.0) of shoot vegetative development and growth from planting to early boot by adding nitrogen and water balances and response functions for seedling emergence, tiller and leaf appearance, leaf and internode growth, and leaf and tiller senescence to the existing wheat development and growth model, SHOOTGRO 1.0. Model inputs include daily maximum and minimum air temperature, rainfall, daily photosynthetically active radiation, soil characteristics necessary to compute soil N and water balances, and several factors describing the cultivar and soil conditions at planting. The model provides information on development and growth characteristics of up to six cohorts of plants within the canopy (cohort groupings are based on time of emergence). The cohort structure allows SHOOTGRO 2.0 to provide output on the frequency of occurrence of plants with specific features (tillers and leaves) within the canopy. The model was constructed so that only water availability limited seedling emergence. Resource availability (nitrogen and water) does not influence time of leaf appearance. Leaf and internode growth, and leaf and tiller senescence processes are limited by the interaction of N and water availability. Tiller appearance is influenced by the interaction of N, radiation and water availability. Predicted and observed dates of emergence and appearance of the first tiller had correlation coefficients of 0.98 and 0.93, respectively. However, these events were, on average, predicted 3.2 and 5.2 days later than observed. SHOOTGRO 2.0 generally under-predicted the number of culms per unit land area, partially because the simulation is limited to a maximum of 16 culms/plant. Model output shows that the simulation is sensitive to N and water inputs. The model provides a tool for predicting vegetative development and growth of the winter wheat with individual culms identified and followed from emergence through boot. SHOOTGRO 2.0 can be used in evaluating alternative crop management strategies.
引用
收藏
页码:183 / 203
页数:21
相关论文
共 36 条
[1]  
[Anonymous], 1975, CROP PHYSIOL
[2]  
[Anonymous], 1985, WHEAT GROWTH MODELIN
[3]   DAYLENGTH CHANGE AND LEAF APPEARANCE IN WINTER-WHEAT [J].
BAKER, CK ;
GALLAGHER, JN ;
MONTEITH, JL .
PLANT CELL AND ENVIRONMENT, 1980, 3 (04) :285-287
[4]   EFFECTS OF TEMPERATURE ON LEAF APPEARANCE IN SPRING AND WINTER-WHEAT CULTIVARS [J].
BAKER, JT ;
PINTER, PJ ;
REGINATO, RJ ;
KANEMASU, ET .
AGRONOMY JOURNAL, 1986, 78 (04) :605-613
[5]   EFFECT OF LATITUDE ON PHENOLOGY OF COLT WINTER-WHEAT [J].
BAUER, A ;
GARCIA, R ;
KANEMASU, ET ;
BLAD, BL ;
HATFIELD, JL ;
MAJOR, DJ ;
REGINATO, RJ ;
HUBBARD, KG .
AGRICULTURAL AND FOREST METEOROLOGY, 1988, 44 (02) :131-140
[6]   SOURCES OF VARIATION AND MEASURES OF VARIABILITY IN EVEN-AGED STANDS OF PLANTS [J].
BENJAMIN, LR ;
HARDWICK, RC .
ANNALS OF BOTANY, 1986, 58 (06) :757-778
[7]   EFFECTS OF IRRADIANCE AND WATER-SUPPLY ON GRAIN DEVELOPMENT IN WHEAT [J].
BROCKLEHURST, PA ;
MOSS, JP ;
WILLIAMS, W .
ANNALS OF APPLIED BIOLOGY, 1978, 90 (02) :265-276
[9]  
CAMPBELL CA, 1977, CAN J SOIL SCI, V57, P311, DOI 10.4141/cjss77-036
[10]  
GODWIN DC, 1985, NATO ASI SERIES A, V86, P311