FRACTURE MECHANISMS OF FIBER-REINFORCED TITANIUM-ALLOY MATRIX COMPOSITES .4. LOW-CYCLE FATIGUE

被引:34
作者
JENG, SM [1 ]
ALASSOEUR, P [1 ]
YANG, JM [1 ]
AKSOY, S [1 ]
机构
[1] TEXTRON LYCOMING,STARTFORD,CT 06497
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 1991年 / 148卷 / 01期
关键词
D O I
10.1016/0921-5093(91)90866-L
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The low cycle fatigue behavior and mechanisms of fatigue damage initiation and propagation of several SCS-6 fiber-reinforced titanium alloy composites at room temperature were investigated. The fatigue damage diagram was constructed using the maximum stress in the fiber vs. fatigue life. Depending on the stress levels applied, the fatigue damage of the composites can be classified into three regions: (1) fiber breakage dominated, (2) interfacial cracking, matrix cracking and fiber breakage dominated (progressive) and (3) matrix cracking dominated. The microstructural parameters which affect the low cycle fatigue behavior of these composites are also discussed.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1987, FATIGUE COMPOSITE MA
[2]  
BARTOLOTTA PA, 1990, NASA103157 TECH MEM
[3]   MATRIX FRACTURE IN FIBER-REINFORCED CERAMICS [J].
BUDIANSKY, B ;
HUTCHINSON, JW ;
EVANS, AG .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1986, 34 (02) :167-189
[4]   ISOTHERMAL AND NONISOTHERMAL FATIGUE BEHAVIOR OF A METAL MATRIX COMPOSITE [J].
GABB, TP ;
GAYDA, J ;
MACKAY, RA .
JOURNAL OF COMPOSITE MATERIALS, 1990, 24 (06) :667-686
[5]   FRACTURE MECHANISMS OF FIBER-REINFORCED TITANIUM-ALLOY MATRIX COMPOSITES .2. TENSILE BEHAVIOR [J].
JENG, SM ;
YANG, JM ;
YANG, CJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 138 (02) :169-180
[6]   FRACTURE MECHANISMS OF FIBER-REINFORCED TITANIUM-ALLOY MATRIX COMPOSITES .3. TOUGHENING BEHAVIOR [J].
JENG, SM ;
YANG, JM ;
YANG, CJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 138 (02) :181-190
[7]  
JENG SM, UNPUB FRACTURE MECHA
[8]  
Johnson W., 1989, ASTM STP, V1032, P194
[9]  
JOHNSON WS, 1982, ASTM STP, V775, P83
[10]  
Marshall D. B., 1986, FRACTURE MECHANICS C, P1