HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY-PROBLEMS

被引:83
作者
KOJIMA, M
MEGIDDO, N
NOMA, T
机构
[1] IBM CORP,DIV RES,ALMADEN RES CTR,SAN JOSE,CA 95120
[2] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[3] TOKYO INST TECHNOL,DEPT SYST SCI,MEGURO KU,TOKYO 152,JAPAN
关键词
COMPLEMENTARITY PROBLEM; CONTINUATION METHOD; PATH-FOLLOWING METHOD; PO-FUNCTION;
D O I
10.1287/moor.16.4.754
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A complementarity problem with a continuous mapping f from R(n) into itself can be written as the system of equations F(x,y) = 0 and (x,y) greater-than-or-equal-to 0. Here F is the mapping from R2n into itself defined by F(x,y) = (x1y1, x2y2,...,x(n)y(n),y-f(x)). Under the assumption that the mapping f is a P0-function, we study various aspects of homotopy continuation methods that trace a trajectory consisting of solutions of the family of systems of equations F(x,y) = t(a,b) and (x,y) greater-than-or-equal-to 0 until the parameter t greater-than-or-equal-to 0 attains 0. Here (a,b) denotes a 2n-dimensional constant positive vector. We establish the existence of a trajectory which leads to a solution of the problem, and then present a numerical method for tracing the trajectory. We also discuss the global and local convergence of the method.
引用
收藏
页码:754 / 774
页数:21
相关论文
共 29 条
[1]   NONLINEAR PROGRAMS WITH POSITIVELY BOUNDED JACOBIANS [J].
COTTLE, RW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (01) :147-&
[2]  
Fiedler M., 1962, CZECH MATH J, V12, P382
[3]  
Gonzaga C.C., 1989, PROGR MATH PROGRAMMI, P1
[4]  
Hironaka H., 1975, P S PURE MATH, V29, P165
[5]  
JARRE F, 1987, DFG35 U WURZB I ANG
[6]  
Karamardian S., 1972, MATHEMATICAL PROGRAM, V2, P107, DOI DOI 10.1007/BF01584538
[7]   A NEW CONTINUATION METHOD FOR COMPLEMENTARITY-PROBLEMS WITH UNIFORM P-FUNCTIONS [J].
KOJIMA, M ;
MIZUNO, S ;
NOMA, T .
MATHEMATICAL PROGRAMMING, 1989, 43 (01) :107-113
[8]   A POLYNOMIAL-TIME ALGORITHM FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :1-26
[10]  
Kojima M., 1989, PROGR MATH PROGRAMMI, P29