MODEL FOR SURFACE CRACKING

被引:41
作者
COLINA, H
DE ARCANGELIS, L
ROUX, S
机构
[1] Laboratoire de Physique et Mecanique des Milieux Heterogenes, Ecole Superieure de Physique et Chimie Industrielles, 75231 Paris Cedex 05
关键词
D O I
10.1103/PhysRevB.48.3666
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a network model to study the cracking of the surface of a material subjected to an imposed strain along one boundary, or to a surface shrinkage induced by drying or cooling. The model we study is an electrical analog of the mechanical problem, and consists in a network of fuses whose breaking thresholds are randomly distributed. The coupling with a substrate, where a uniform electric field is applied, models the hindering to shrinking of the mechanical problem. Some analytical results are derived for the one-dimensional version of this model. In two dimensions, we study numerically a number of mechanical and geometrical properties for two distributions of breaking strengths and make a qualitative comparison with experimental results.
引用
收藏
页码:3666 / 3676
页数:11
相关论文
共 17 条
[1]  
BREYSSE D, 1991, FRACTURE PROCESSES C, P149
[2]  
Charmet J. C., 1990, DISORDER FRACTURE
[3]  
COLINA H, UNPUB
[4]   THEORY OF MECHANICAL-PROPERTIES OF CERAMIC-MATRIX COMPOSITES [J].
CURTIN, WA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (11) :2837-2845
[5]   SCALING LAWS IN FRACTURE [J].
DE ARCANGELIS, L ;
HANSEN, A ;
HERRMANN, HJ ;
ROUX, S .
PHYSICAL REVIEW B, 1989, 40 (01) :877-880
[6]   SCALING AND MULTISCALING LAWS IN RANDOM FUSE NETWORKS [J].
DE ARCANGELIS, L ;
HERRMANN, HJ .
PHYSICAL REVIEW B, 1989, 39 (04) :2678-2684
[7]   ROUGHNESS OF CRACK INTERFACES [J].
HANSEN, A ;
HINRICHSEN, EL ;
ROUX, S .
PHYSICAL REVIEW LETTERS, 1991, 66 (19) :2476-2479
[8]   RUPTURE OF CENTRAL-FORCE LATTICES [J].
HANSEN, A ;
ROUX, S ;
HERRMANN, HJ .
JOURNAL DE PHYSIQUE, 1989, 50 (07) :733-744
[9]   FRACTURE OF DISORDERED, ELASTIC LATTICES IN 2 DIMENSIONS [J].
HERRMANN, HJ ;
HANSEN, A ;
ROUX, S .
PHYSICAL REVIEW B, 1989, 39 (01) :637-648
[10]  
Herrmann HJ, 1990, STATISTICAL MODELS F