DECONFINEMENT TRANSITION AND MONOPOLES IN T-NOT-EQUAL-O SU(2) QCD

被引:62
作者
KITAHARA, S [1 ]
MATSUBARA, Y [1 ]
SUZUKI, T [1 ]
机构
[1] NANAO JR COLL, NANAO 926, JAPAN
来源
PROGRESS OF THEORETICAL PHYSICS | 1995年 / 93卷 / 01期
关键词
D O I
10.1143/PTP.93.1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The role of monopoles in the deconfinement transition is discussed in the framework of abelian projection in the maximally abelian gauge in T not equal 0 SU(2) QCD. Only one (or a few near beta(c)) long connected monopole loop exists uniformly through the whole lattice in each vacuum configuration in addition to some very short loops in the confinement phase and the long loop disappears in the deep deconfinement region. Energy-entropy balance of the long loops of maximally extended monopoles explains the existence of the deconfinement transition and reproduces roughly the value of the critical temperature.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 28 条
[1]   TOPOLOGY OF HIGGS FIELDS [J].
ARAFUNE, J ;
FREUND, PGO ;
GOEBEL, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (02) :433-437
[2]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[3]  
Bode A., 1994, Nuclear Physics B, Proceedings Supplements, V34, P549, DOI 10.1016/0920-5632(94)90443-X
[4]   TOPOLOGICAL EXCITATIONS AND MONTE-CARLO SIMULATION OF ABELIAN GAUGE-THEORY [J].
DEGRAND, TA ;
TOUSSAINT, D .
PHYSICAL REVIEW D, 1980, 22 (10) :2478-2489
[5]  
EJIRI S, IN PRESS PHYS LETT B
[6]  
EJIRI S, IN PRESS NUCL PHYS S
[8]   ABELIAN DOMINANCE IN SU(2) COLOR CONFINEMENT [J].
HIOKI, S ;
KITAHARA, S ;
KIURA, S ;
MATSUBARA, Y ;
MIYAMURA, O ;
OHNO, S ;
SUZUKI, T .
PHYSICS LETTERS B, 1991, 272 (3-4) :326-332
[9]   EXTENDED ABELIAN MONOPOLES AND CONFINEMENT IN THE SU(2) LATTICE GAUGE-THEORY [J].
IVANENKO, TL ;
POCHINSKY, AV ;
POLIKARPOV, MI .
PHYSICS LETTERS B, 1990, 252 (04) :631-635
[10]   TOPOLOGY AND DYNAMICS OF THE CONFINEMENT MECHANISM [J].
KRONFELD, AS ;
SCHIERHOLZ, G ;
WIESE, UJ .
NUCLEAR PHYSICS B, 1987, 293 (02) :461-478