EXTRAPOLATION METHODS FOR THE WEAK APPROXIMATION OF ITO DIFFUSIONS

被引:15
作者
KLOEDEN, PE
PLATEN, E
HOFMANN, N
机构
[1] AUSTRALIAN NATL UNIV,INST ADV STUDIES,CANBERRA,ACT 2601,AUSTRALIA
[2] WEIERSTRASS INST APPL ANAL & STOCHAST,D-10117 BERLIN,GERMANY
关键词
STOCHASTIC DIFFERENTIAL EQUATIONS; ITO DIFFUSIONS; EXTRAPOLATION METHODS; WEAK APPROXIMATION; STOCHASTIC TAYLOR FORMULA;
D O I
10.1137/0732069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher-order weak extrapolation methods for the approximation of functionals of Ito diffusions are considered. Under appropriate regularity conditions it is shown that extrapolations allow a considerable increase in the weak order of convergence of a discrete-time one-step approximation method. Numerical experiments indicate the efficiency of extrapolations based on higher-order weak schemes for stochastic differential equations with additive noise.
引用
收藏
页码:1519 / 1534
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1992, NUMERICAL SOLUTION S, DOI DOI 10.1007/978-3-662-12616-5
[2]  
BULIRSCH J, 1973, EINFUHRUNG NUMERISCH, V1
[3]  
BULIRSCH J, 1973, EINFUHRUNG NUMERISCH, V2
[4]  
HAIRER E, 1987, SERIES COMPUTATIONAL, V8
[5]  
Ikeda N., 1989, STOCHASTIC DIFFERENT
[6]   TIME DISCRETE TAYLOR APPROXIMATIONS FOR ITO PROCESSES WITH JUMP COMPONENT [J].
MIKULEVICIUS, R ;
PLATEN, E .
MATHEMATISCHE NACHRICHTEN, 1988, 138 :93-104
[7]  
MIKULEVICIUS R, 1983, LIET MAT RINK, V4, P18
[8]  
MILSHTEIN GN, 1978, THEOR PROBAB APPL+, V23, P396, DOI 10.1137/1123045
[9]  
MILSHTEIN GN, 1985, THEOR PROBAB APPL, V30, P750
[10]  
NEWTON NJ, 1986, STOCHASTICS, V19, P175