Smooth densities for degenerate stochastic delay equations with hereditary drift

被引:12
作者
Bell, DR [1 ]
Mohammed, SEA [1 ]
机构
[1] SO ILLINOIS UNIV,DEPT MATH,CARBONDALE,IL 62901
关键词
hereditary delay systems; Malliavin calculus; smooth densities;
D O I
10.1214/aop/1176987807
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the existence of smooth densities for solutions of Rd-valued stochastic hereditary differential systems of the form dx(t) = H(t, x) dt + g(t, x(t - r)) dW(t). In the above equation, W is an n-dimensional Wiener process, r is a positive time delay, H is a nonanticipating functional defined on the space of paths in R(d) and g is an n X d matrix-valued function defined on [0, infinity) X R(d), such that gg* has degeneracies of polynomial order on a hypersurface in R(d). In the course of proving this result, we establish a very general criterion for the hypoellipticity of a class of degenerate parabolic second-order time-dependent differential operators with space-independent principal part.
引用
收藏
页码:1875 / 1894
页数:20
相关论文
共 11 条
[1]   THE MALLIAVIN CALCULUS AND STOCHASTIC DELAY EQUATIONS [J].
BELL, DR ;
MOHAMMED, SEA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :75-99
[2]   AN EXTENSION OF HORMANDER THEOREM FOR INFINITELY DEGENERATE 2ND-ORDER OPERATORS [J].
BELL, DR ;
MOHAMMED, SEA .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (03) :453-475
[3]  
BELL DR, 1993, CR ACAD SCI I-MATH, V317, P1059
[4]  
BELL DR, 1987, MALLIAVIN CALCULUS
[5]  
GIHMAN II, 1981, STOCHASTIC DIFFERENT
[6]  
Ito K., 1964, J MATH KYOTO U, V4, P1
[7]  
Kusuoka S., 1984, STOCHASTIC ANAL VOL, P271
[8]  
Kusuoka S., 1985, J FS U TOKYO SC IA, V1, P1
[9]  
Mohammed S., 1984, STOCHASTIC FUNCTIONA
[10]  
Mohammed S. E. A., 1986, STOCHASTICS, V17, P207