A METHOD FOR DETERMINING LOWER-EXTREMITY MUSCLE TENDON LENGTHS DURING FLEXION EXTENSION MOVEMENTS

被引:211
作者
HAWKINS, D
HULL, ML
机构
[1] UNIV CALIF DAVIS,BIOMED ENGN GRAD GRP,DAVIS,CA 95616
[2] UNIV CALIF DAVIS,DEPT MECH ENGN,DAVIS,CA 95616
关键词
Biomechanics;
D O I
10.1016/0021-9290(90)90304-L
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A study was conducted to examine the relationship between muscle-tendon lengths of 16 lower extremity muscles and the flexion angle(s) of the joint(s) they cross. Anthropometric data from six subjects were obtained. Various lower extremity joint flexion angle combinations were simulated for each subject using computer software. For each simulated lower extremity position, muscle origin and insertion locations were determined based on averaged cadaveric origin/insertion information and individual anthropometric parameters. Corresponding muscle-tendon lengths were computed and normalized to segment lengths. Regression equations were derived which allow normalized muscle-tendon lengths to be estimated from known joint flexion angles. The regression equations obtained for biarticular muscles fit the data quite well giving correlation coefficients greater than 0.92. The correlation coefficients for the equations describing normalized single joint muscle-tendon lengths range from 0.77 to 0.97. The equations were then validated by comparing predicted lengths to those reported by previous investigations. Confirming the utility of the equations, the comparisons were excellent for both uniarticular and biarticular muscles. Used in conjunction with velocity data (obtained by differentiating the length data) and electromyogram recordings, these equations enable a detailed analysis of muscle function. © 1990.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 5 条
[1]   THE FUNCTIONAL ROLES OF THE HAMSTRINGS AND QUADRICEPS DURING CYCLING - LOMBARDS PARADOX REVISITED [J].
ANDREWS, JG .
JOURNAL OF BIOMECHANICS, 1987, 20 (06) :565-575
[2]   A MODEL OF THE HUMAN TRICEPS SURAE MUSCLE TENDON COMPLEX APPLIED TO JUMPING [J].
BOBBERT, MF ;
HUIJING, PA ;
SCHENAU, GJV .
JOURNAL OF BIOMECHANICS, 1986, 19 (11) :887-898
[3]   A MODEL OF LOWER-EXTREMITY MUSCULAR ANATOMY [J].
BRAND, RA ;
CROWNINSHIELD, RD ;
WITTSTOCK, CE ;
PEDERSEN, DR ;
CLARK, CR ;
VANKRIEKEN, FM .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1982, 104 (04) :304-310
[4]  
Grieve D. W., 1978, INT SERIES BIOMECH A, V4, P405
[5]  
PIERRYNOWSKI MR, 1985, INT SERIES BIOMECH B, V5, P33