SECONDARY RESONANCES AND APPROXIMATE MODELS OF ROUTES TO CHAOTIC MOTION IN NONLINEAR OSCILLATORS

被引:53
作者
SZEMPLINSKASTUPNICKA, W
机构
[1] Polish Acad of Sciences, Warsaw, Pol, Polish Acad of Sciences, Warsaw, Pol
关键词
D O I
10.1016/S0022-460X(87)81348-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
OSCILLATORS
引用
收藏
页码:155 / 172
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1980, ANN NY ACAD SCI
[2]  
Guckenheimer J., 2013, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, V42, DOI DOI 10.1007/978-1-4612-1140-2
[3]  
Hayashi C., 1964, Nonlinear oscillations in physical systems
[4]   2ND ORDER AVERAGING AND BIFURCATIONS TO SUBHARMONICS IN DUFFING EQUATION [J].
HOLMES, C ;
HOLMES, P .
JOURNAL OF SOUND AND VIBRATION, 1981, 78 (02) :161-174
[5]  
JOOSS G, 1981, ELEMENTARY STABILITY
[6]  
LEVEN RW, 1985, PHYSICA D, V16, P371, DOI 10.1016/0167-2789(85)90015-6
[7]   EXPERIMENTS ON CHAOTIC MOTIONS OF A FORCED NON-LINEAR OSCILLATOR - STRANGE ATTRACTORS [J].
MOON, FC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (03) :638-644
[8]  
POPP K, 1982, FESTSCHRIFT ZUM 70 G
[9]  
Schuster H.G., 1984, Hitchcock
[10]  
SEYDEL R, 1980, TUMM8019 TU MUNCH I