MINIMUM NORM SOLUTIONS TO LINEAR ELASTIC ANALYSIS PROBLEMS

被引:14
作者
KANEKO, I
PLEMMONS, RJ
机构
[1] N CAROLINA STATE UNIV, DEPT MATH, RALEIGH, NC 27607 USA
[2] N CAROLINA STATE UNIV, DEPT COMP SCI, RALEIGH, NC 27607 USA
关键词
D O I
10.1002/nme.1620200602
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:983 / 998
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1973, INTEGRATED THEORY FI
[2]  
Argyris J. H., 1975, Computer Methods in Applied Mechanics and Engineering, V5, P97, DOI 10.1016/0045-7825(75)90038-9
[3]  
BENISRAEL A, 1974, GENERALIZED INVERSES
[4]  
BERRY M, 1983, UNPUB ALGORITHM COMP
[5]   L2-SOLUTIONS TO UNDERDETERMINED LINEAR-SYSTEMS [J].
CLINE, RE ;
PLEMMONS, RJ .
SIAM REVIEW, 1976, 18 (01) :92-106
[6]  
DANTZIG GB, 1963, LINEAR PROGRAMMINING
[7]  
Denke PH, 1962, GEN DIGITAL COMPUTER
[8]   AUTOMATIC SELECTION OF REDUNDANCIES [J].
DOMASZEWSKI, M ;
BORKOWSKI, A .
COMPUTERS & STRUCTURES, 1979, 10 (04) :577-582
[9]   SOLUTION OF LARGE-SCALE SPARSE LEAST-SQUARES PROBLEMS USING AUXILIARY STORAGE [J].
GEORGE, JA ;
HEATH, MT ;
PLEMMONS, RJ .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (04) :416-429
[10]  
GEORGE JA, 1982, SOLUTION SPARSE UNDE