POWER-SERIES EXPANSION FOR THE TIME EVOLUTION OPERATOR WITH A HARMONIC-OSCILLATOR REFERENCE SYSTEM

被引:12
作者
DROZDOV, AN
机构
[1] Física Terica, Universidad de Sevilla, 41080 Sevilla
[2] Institute for High Temperatures, 127412 Moscow
关键词
D O I
10.1103/PhysRevLett.75.4342
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple framework for accurate solution of a general class of one-dimensional Fokker-Planck and/ or Schrodinger equations is presented. The main idea is representing the propagator in the form P(x,t/x(0)) = P-0(x,t/x(0))exp[W(x,t/x(0))] and expanding the exponent W in a power series in a given function of t, where Po is the exact solution of a reference harmonic-oscillator problem. The expansion coefficients are analytically evaluated from recursive relations. This approach is shown to be a dramatic improvement over the standard Taylor series expansion for the propagator in that just a few terms of the present expansion are sufficient to attain a very accurate description in the whole time domain.
引用
收藏
页码:4342 / 4345
页数:4
相关论文
共 13 条
[1]   MULTIDIMENSIONAL VARIATIONAL GAUSSIAN WAVE PACKET DYNAMICS WITH APPLICATION TO PHOTODISSOCIATION SPECTROSCOPY [J].
COALSON, RD ;
KARPLUS, M .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (06) :3919-3930
[2]   A CONNECTED-GRAPH EXPANSION OF THE ANHARMONIC-OSCILLATOR PROPAGATOR [J].
CORNS, RA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02) :593-607
[3]   QUASI-LINEAR APPROXIMATIONS FOR THE PROPAGATOR OF THE FOKKER-PLANCK EQUATION [J].
DROZDOV, AN .
PHYSICA A, 1993, 196 (02) :258-282
[4]   EXPONENTIAL POWER-SERIES EXPANSION FOR THE PROPAGATOR OF GENERAL DIFFUSION-PROCESSES [J].
DROZDOV, AN .
PHYSICA A, 1993, 196 (02) :283-312
[5]   AN ACCURATE POWER-SERIES EXPANSION FOR PATH-INTEGRALS ON CURVED MANIFOLDS [J].
DROZDOV, AN .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (02) :241-245
[6]   PATH INTEGRAL SOLUTION OF THE FOKKER-PLANCK EQUATION VIA A GENERALIZED TROTTER FORMULA [J].
DROZDOV, AN .
PHYSICS LETTERS A, 1992, 171 (3-4) :175-182
[7]   QUANTUM DYNAMICS VIA MOBILE BASIS-SETS - THE DIRAC VARIATIONAL PRINCIPLE [J].
HSU, D ;
COKER, DF .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (06) :4266-4271
[8]   EXPONENTIAL POWER-SERIES EXPANSION FOR THE QUANTUM TIME EVOLUTION OPERATOR [J].
MAKRI, N ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (02) :904-911
[9]   THEORY OF THE ONE-VARIABLE FOKKER-PLANCK EQUATION [J].
MIYAZAWA, T .
PHYSICAL REVIEW A, 1989, 39 (03) :1447-1468
[10]   A PHASE-SPACE FLUCTUATION METHOD FOR QUANTUM DYNAMICS [J].
MOLZAHN, FH ;
OSBORN, TA .
ANNALS OF PHYSICS, 1994, 230 (02) :343-394