The lactose repressor protein from the mutant Escherichia coli BG185 contains valine at position 81 instead of alanine. Spectroscopic, chemical and direct binding measurements demonstrate that the BG185 protein exhibits properties similar to the wild-type repressor-inducer complex. Kinetic measurements of inducer binding to BG185 repressor yielded rate constants that were > 2 orders of magnitude smaller than those observed for wild-type repressor: these results suggest that the structural transitions required for inducer binding are markedly impaired by the mutation. The fluorescence spectral shift in response to inducer binding was identical for mutant and wild-type proteins. This identity indicates direct effects of inducer binding on the tryptophan(s) near the sugar binding site rather than environmental changes consequent to conformational shifts. Analogy to the bacterial sugar binding proteins suggests that the Ala to Val change at position 81 in BG185 repressor yields a molecule that is fixed in a closed, sugar-binding conformation.