GENERALIZED S-ESTIMATORS

被引:69
作者
CROUX, C
ROUSSEEUW, PJ
HOSSJER, O
机构
[1] UNIV INSTELLING ANTWERPEN, DEPT MATH & COMP SCI, B-2610 ANTWERP, BELGIUM
[2] LUND INST TECHNOL, DEPT MATH STAT, S-22100 LUND, SWEDEN
关键词
BREAKDOWN POINT; INFLUENCE FUNCTION; MAXBIAS CURVE; REGRESSION ANALYSIS; ROBUSTNESS;
D O I
10.1080/01621459.1994.10476867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we introduce a new type of positive-breakdown regression method, called a generalized S-estimator (or GS-estimator), based on the minimization of a generalized M-estimator of residual scale. We compare the class of GS-estimators with the usual S-estimators, including least median of squares. It turns out that GS-estimators attain a much higher efficiency than S-estimators, at the cost of a slightly increased worst-case bias. We investigate the breakdown point, the maxbias curve, and the influence function of GS-estimators. We also give an algorithm for computing GS-estimators and apply it to real and simulated data.
引用
收藏
页码:1271 / 1281
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2003, ROBUST REGRESSION OU
[2]  
Cheney E.W., 1982, INTRO APPROXIMATION, V2nd ed.
[3]  
Croux C, 1992, COMPUTATIONAL STATIS, P411, DOI DOI 10.1007/978-3-662-26811-7_58
[4]  
Donoho D., 1983, FESTSCHRIFT EL LEHMA, P157
[5]  
HAMPEL FR, 1986, ROBUST STATISTICS AP
[6]   LOWER BOUNDS FOR CONTAMINATION BIAS - GLOBALLY MINIMAX VERSUS LOCALLY LINEAR-ESTIMATION [J].
HE, XM ;
SIMPSON, DG .
ANNALS OF STATISTICS, 1993, 21 (01) :314-337
[7]   ON THE OPTIMALITY OF S-ESTIMATORS [J].
HOSSJER, O .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (05) :413-419
[8]  
HOSSJER O, 1994, UNPUB J MULTIVARIATE, V51
[9]   MIN-MAX BIAS ROBUST REGRESSION [J].
MARTIN, RD ;
YOHAI, VJ ;
ZAMAR, RH .
ANNALS OF STATISTICS, 1989, 17 (04) :1608-1630
[10]  
MAZZI SV, 1991, THESIS U BRIT COLUMB