QUANTUM GALILEI GROUP AS SYMMETRY OF MAGNONS

被引:24
作者
BONECHI, F
CELEGHINI, E
GIACHETTI, R
SORACE, E
TARLINI, M
机构
[1] IST NAZL FIS NUCL,FLORENCE,ITALY
[2] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40126 BOLOGNA,ITALY
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 09期
关键词
D O I
10.1103/PhysRevB.46.5727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inhomogeneous quantum groups are shown to be an effective algebraic tool in the study of integrable systems. The method is illustrated on the one-dimensional Heisenberg ferromagnet whose symmetry is investigated by means of the quantum Galilei group GAMMA(q)(1) here introduced. Both the single magnon and the s = 1/2 bound states of n magnons are completely described by the algebra. Therefore, some of the results provided by the Bethe-ansatz method emerge as a natural consequence of the quantum symmetry of the discrete chain.
引用
收藏
页码:5727 / 5730
页数:4
相关论文
共 11 条
[1]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[2]   INHOMOGENEOUS QUANTUM GROUPS AS SYMMETRIES OF PHONONS [J].
BONECHI, F ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (25) :3718-3720
[3]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[4]   QUANTUM GROUPS OF MOTION AND ROTATIONAL SPECTRA OF HEAVY-NUCLEI [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
PHYSICS LETTERS B, 1992, 280 (3-4) :180-186
[5]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[6]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[7]  
CELEGHINI E, 1990, IN PRESS CONTRACTION
[8]  
KOREPIN VE, IN PRESS QUANTUM INV
[9]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .1. GENERAL SOLUTION AND GROUND STATE [J].
LIEB, EH ;
LINIGER, W .
PHYSICAL REVIEW, 1963, 130 (04) :1605-+
[10]  
Mattis D. C., 1981, THEORY MAGNETISM, VI