COMPLEX DYNAMICS OF SPIRAL WAVES AND MOTION OF CURVES

被引:161
作者
MIKHAILOV, AS
DAVYDOV, VA
ZYKOV, VS
机构
[1] NN SEMENOV CHEM PHYS INST,MOSCOW 117334,RUSSIA
[2] MIREA,DEPT PHYS,MOSCOW 117454,RUSSIA
[3] MAX PLANCK SOC,INST MOLEC PHYSIOL,W-4600 DORTMUND 1,GERMANY
[4] RUSSIAN ACAD SCI,INST CONTROL SCI,MOSCOW 117342,RUSSIA
来源
PHYSICA D | 1994年 / 70卷 / 1-2期
关键词
D O I
10.1016/0167-2789(94)90054-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this review paper we consider spiral waves in weakly excitable media where they can be described using a simple kinematical model. The model is formulated in terms of the motion of curves with free ends. These curves can grow or contract while moving over a plane. A steadily rotating spiral is a dynamical attractor of such a system. Application of spatial gradients or temporal modulation of the medium's properties induce drift of spirals. When interactions between the curves are taken into account, this results in appearance of complex meandering regimes.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 77 条
[1]  
Abramychev A. Yu., 1990, Soviet Physics - JETP, V70, P666
[2]  
ABRAMYCHEV AY, 1990, BIOFIZIKA, V34, P979
[3]  
AGLADZE KI, 1987, JETP LETT+, V45, P767
[4]  
[Anonymous], 1991, MATH BIOL
[5]  
Arnold V. I., 1986, CATASTROPHE THEORY, V2nd ed.
[6]   LINEAR-STABILITY ANALYSIS OF ROTATING SPIRAL WAVES IN EXCITABLE MEDIA [J].
BARKLEY, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (13) :2090-2093
[7]   SPIRAL-WAVE DYNAMICS IN A SIMPLE-MODEL OF EXCITABLE MEDIA - THE TRANSITION FROM SIMPLE TO COMPOUND ROTATION [J].
BARKLEY, D ;
KNESS, M ;
TUCKERMAN, LS .
PHYSICAL REVIEW A, 1990, 42 (04) :2489-2492
[8]   SPIRAL WAVE SOLUTIONS FOR REACTION DIFFUSION-EQUATIONS IN A FAST REACTION SLOW DIFFUSION LIMIT [J].
BERNOFF, AJ .
PHYSICA D, 1991, 53 (01) :125-150
[9]  
Blaschke W, 1945, DIFFERENTIAL GEOMETR
[10]  
BRAUNE M, 1992, SPATIO TEMPORAL ORG, P34