ON AN INEQUALITY OF LIEB AND THIRRING

被引:151
作者
ARAKI, H
机构
[1] Research Institute for Mathematical Sciences, Kyoto University, Kyoto
关键词
AMS subject classification (1980): 47B10;
D O I
10.1007/BF01045887
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The following generalization of an inequality of Lieb and Thirring is proved: {Mathematical expression} for all positive selfadjoint operators a and b and for positive numbers q>1 and k>0. More generally, {Mathematical expression} for any monotone increasing continuous function φ{symbol} on (0, ∞) such that φ{symbol}(0)=0 and ξ→φ{symbol}(eξ) is convex. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 10 条
[1]  
Cordes H.O., 1987, LONDON MATH SOC LECT, V76
[2]  
FACK T, 1982, J OPERAT THEOR, V7, P307
[3]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[4]  
GOLDEN S, 1965, PHYS REV, V137, P1127
[5]  
HEINZ E., 1951, MATH ANN, V123, P415
[6]  
Lieb E., 1976, STUDIES MATH PHYS, P301
[8]  
TAKAYUKI F, IN PRESS REV MATH PH
[9]   INEQUALITY WITH APPLICATIONS IN STATISTICAL MECHANICS [J].
THOMPSON, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (11) :1812-+