THE MODIFIED EQUATION APPROACH TO FLUX-CORRECTED TRANSPORT

被引:7
作者
GRANDJOUAN, N
机构
[1] Laboratoire de Physique des Milieux Ionises, Laboratoire du CNRS, Ecole Polytechnique
关键词
D O I
10.1016/0021-9991(90)90046-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For convective problems, the "modified equation" can be considered as the actual partial differential equation solved by a given numerical scheme using finite differences. Such an expression characterizes the dissipative and dispersive properties of the scheme. Adjusting the parameters of flux-corrected-transport (FCT) algorithms to cancel the successive truncation terms in the modified equation can be used in place of Fourier analysis when the velocity is no longer constant and uniform. This technique is used to propose a time-centered FCT algorithm in which diffusion/antidiffusion coefficients are velocity gradient dependent and which has reduced diffusion and noise level. © 1990.
引用
收藏
页码:424 / 440
页数:17
相关论文
共 15 条
[1]   FLUX-CORRECTED TRANSPORT II - GENERALIZATIONS OF METHOD [J].
BOOK, DL ;
BORIS, JP ;
HAIN, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 18 (03) :248-283
[2]  
BOOK DL, 1981, FINITE DIFFERENCE TE
[3]   FLUX-CORRECTED TRANSPORT .3. MINIMAL-ERROR FCT ALGORITHMS [J].
BORIS, JP ;
BOOK, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 20 (04) :397-431
[4]   FLUX-CORRECTED TRANSPORT .1. SHASTA, A FLUID TRANSPORT ALGORITHM THAT WORKS [J].
BORIS, JP ;
BOOK, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 11 (01) :38-69
[5]  
BORIS JP, 1976, 3237 NAV RES LAB MEM
[6]  
BORIS JP, 1989, COMMUNICATION
[7]  
Hirt C. W., 1968, J COMPUT PHYS, V2, P339, DOI [10.1016/0021-9991(68)90041-7, DOI 10.1016/0021-9991(68)90041-7]
[8]  
LERAT A, 1973, CR ACAD SCI A MATH, V276, P759
[9]  
LERAT A, 1981, THESIS U P M CURIE P
[10]  
PEYRET R, UNPUB 19775 OFF NAT