QUANTUM DISSIPATION AND QUANTUM GROUPS

被引:18
作者
IORIO, A [1 ]
VITIELLO, G [1 ]
机构
[1] IST NAZL FIS NUCL,I-84100 SALERNO,ITALY
关键词
D O I
10.1006/aphy.1995.1071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the role of quantum deformation of Weyl-Heisenberg algebra in dissipative systems and finite temperature systems. We express the time evolution generator of the damped harmonic oscillator and the generator of thermal Bogolubov transformations in terms of operators of the quantum Weyl-Heisenberg algebra. The quantum parameter acts as a label for the unitarily inequivalent representations of the canonical commutation relations in which the space of the states splits in the infinite volume limit. (C) Academic Press, Inc.
引用
收藏
页码:496 / 506
页数:11
相关论文
共 24 条
[1]  
Drinfeld V.G., Proc. ICM Berkeley, CA, Amer. Math. Soc, (1986)
[2]  
Jimbo M., Int. J. Mod. Phys. A, 4, (1989)
[3]  
Manin Y.U., Quantum Groups and Non-Commutative Geometry, (1988)
[4]  
Biedenharn L.C., J. Phys. A, 22, (1989)
[5]  
Macfarlane A.J., J. Phys. A, 22, (1989)
[6]  
Celeghini E., De Martino S., De Siena S., Rasetti M., Vitiello G., Mod. Phys. Lett. B, 7, (1993)
[7]  
Ann. Phys. (N. Y.), (1995)
[8]  
Iorio A., Vitiello G., Mod. Phys. Lett. B, 8, (1994)
[9]  
Celeghini E., Rasetti M., Tarlini M., Vitiello G., Mod. Phys. Lett. B, 3, (1989)
[10]  
Celeghini E., Rasetti M., Vitiello G., Thermal Field Theories and Their Applications, (1991)