RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .1. THE HALLEY METHOD

被引:150
作者
CANDELA, V
MARQUINA, A
机构
[1] Departmento de Análisis Matemático, University of Valencia, Burjassot (Valencia), 46100, C/Dr. Moliner
关键词
a priori error bounds; AMS Subject Classification (1980): Primary: 65J15; non-linear equations; Third order iterative methods;
D O I
10.1007/BF02241866
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present a system of a priori error bounds for the Halley method in Banach spaces. Our theorem supplies sufficient conditions on the initial point to ensure the convergence of Halley iterates, by means of a system of "recurrence relations", analogous to those given for the Newton method by Kantorovich, improving previous results by Döring [4]. The error bounds presented are optimal for second degree polynomials. Other rational cubic methods, as the Chebyshev method, will be treated in a subsequent paper. © 1990 Springer-Verlag.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 16 条
[1]   ON THE CONVERGENCE OF HALLEYS METHOD [J].
ALEFELD, G .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (07) :530-536
[2]   HALLEYS VARIATION OF NEWTONS METHOD [J].
BROWN, GH .
AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09) :726-728
[3]   GLOBAL CONVERGENCE OF HALLEYS ITERATION FORMULA [J].
DAVIES, M ;
DAWSON, B .
NUMERISCHE MATHEMATIK, 1975, 24 (02) :133-135
[4]  
Doring B., 1970, Aplikace Matematiky, V15, P418
[6]   ON HALLEY ITERATION METHOD [J].
GANDER, W .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02) :131-134
[7]  
Kantorovich L. V, 1964, FUNCTIONAL ANAL
[8]   AN UPDATED VERSION OF THE KANTOROVICH-THEOREM FOR NEWTON METHOD [J].
MIEL, G .
COMPUTING, 1981, 27 (03) :237-244
[9]   KANTOROVICH THEOREM WITH OPTIMAL ERROR BOUNDS [J].
MIEL, GJ .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (03) :212-215
[10]  
Ortega J.M., 1970, OCLC1154227410, Patent No. 1154227410