INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER

被引:79
作者
CARLIN, BP
POLSON, NG
机构
[1] UNIV MINNESOTA,SCH PUBL HLTH,DIV BIOSTAT,MINNEAPOLIS,MN 55455
[2] UNIV CHICAGO,GRAD SCH BUSINESS,CHICAGO,IL 60637
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 1991年 / 19卷 / 04期
关键词
BAYESIAN MODEL CHOICE; GIBBS SAMPLER; NONLINEAR MODELS; NONNORMAL ERRORS;
D O I
10.2307/3315430
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Bayesian approach to modeling a rich class of nonconjugate problems is presented. An adaptive Monte Carlo integration technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple solution in such a framework. The result is a general strategy for obtaining marginal posterior densities under changing specification of the model error densities and related prior densities. We illustrate the approach in a nonlinear regression setting, comparing the merits of three candidate error distributions.
引用
收藏
页码:399 / 405
页数:7
相关论文
共 18 条
[1]  
ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
[2]  
[Anonymous], 1988, NONLINEAR REGRESSION
[3]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[4]  
Box G.E.P., 1992, BAYESIAN INFERENCE S
[5]   ESTIMATING MICHAELIS-MENTEN PARAMETERS - BIAS, VARIANCE AND EXPERIMENTAL-DESIGN [J].
CURRIE, DJ .
BIOMETRICS, 1982, 38 (04) :907-919
[6]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[7]  
EAVES DM, 1983, BIOMETRIKA, V70, P373
[8]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[9]   ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING [J].
GELFAND, AE ;
HILLS, SE ;
RACINEPOON, A ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) :972-985
[10]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741