A FAST HEURISTIC METHOD FOR POLYNOMIAL MOMENT PROBLEMS WITH BOLTZMANN-SHANNON ENTROPY

被引:8
作者
BORWEIN, JM [1 ]
HUANG, WZ [1 ]
机构
[1] LAKEHEAD UNIV,DEPT MAT SCI,THUNDER BAY,ON P7B 5E1,CANADA
关键词
CONVEX PROGRAMMING; CONSTRAINED OPTIMIZATION; MOMENT PROBLEMS; ENTROPY; HEURISTIC ALGORITHMS;
D O I
10.1137/0805004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider the best entropy estimate to a nonnegative density xOBAR on R(m), given some of its algebraic or trigonometric moments. Using the special structure of this kind of problem, a useful linear relationship among the moments is derived. A simple algorithm then provides a farily good estimate of xOBAR by just solving a couple of linear systems. Numerical computations make the algorithm seem reasonable although the theoretical convergence is still an open problem. Some notes about the error bounds are given at the end of the paper.
引用
收藏
页码:68 / 99
页数:32
相关论文
共 7 条
[1]   CONVERGENCE OF BEST ENTROPY ESTIMATES [J].
Borwein, J. M. ;
Lewis, A. S. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :191-205
[2]   ON THE CONVERGENCE OF MOMENT PROBLEMS [J].
BORWEIN, JM ;
LEWIS, AS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 325 (01) :249-271
[3]   DUALITY RELATIONSHIPS FOR ENTROPY-LIKE MINIMIZATION PROBLEMS [J].
BORWEIN, JM ;
LEWIS, AS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :325-338
[4]   DUAL METHODS IN ENTROPY MAXIMIZATION. APPLICATION TO SOME PROBLEMS IN CRYSTALLOGRAPHY [J].
Decarreau, Andree ;
Hilhorst, Danielle ;
Lemarechals, Claude ;
Navaza, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (02) :173-197
[5]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[6]  
Luenberger DG., 1968, OPTIMIZATION VECTOR
[7]  
TELYAKOVSKII SA, 1990, P STEKLOV I MATH