The method of fundamental solutions for Poisson's equation

被引:205
作者
Golberg, MA
机构
[1] Las Vegas, NV 89119
关键词
boundary element method; fundamental solution; Poisson's equation; numerical method;
D O I
10.1016/0955-7997(95)00062-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show how to extend the method of fundamental solutions (MFS) to solve Poisson's equation in R(2) and R(2) without boundary or domain discretization. To do this an approximate particular solution is found by approximating the right hand side by thin plate splines. The particular solution is then subtracted from the complete solution and Laplace's equation is solved by the usual MFS. Numerical results are obtained for a number of standard boundary value problems with 3-4 figure accuracy attainable by solving fewer than 20 linear equations.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 25 条
[1]  
ALLESANDRI CA, 1991, COMPUT STRUCT, V41, P859
[2]  
ATKINSON K. E., 1978, INTRO NUMERICAL ANAL
[3]   THE NUMERICAL EVALUATION OF PARTICULAR SOLUTIONS FOR POISSONS-EQUATION [J].
ATKINSON, KE .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (03) :319-338
[4]  
ATKINSON KE, 1990, NUMERICAL SOLUTION I
[5]   FUNDAMENTAL-SOLUTIONS METHOD FOR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
BOGOMOLNY, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :644-669
[6]   MULTIVARIATE CARDINAL INTERPOLATION WITH RADIAL-BASIS FUNCTIONS [J].
BUHMANN, MD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) :225-255
[7]  
DUCHON J, LECT NOTES MATH, V571, P85
[8]   ON A METHOD OF ATKINSON FOR EVALUATING DOMAIN INTEGRALS IN THE BOUNDARY-ELEMENT METHOD [J].
GOLBERG, MA ;
CHEN, CS .
APPLIED MATHEMATICS AND COMPUTATION, 1994, 60 (2-3) :125-138
[9]  
GOLBERG MA, 1994, COMMUN BOUNDARY ELEM, V5, P57
[10]  
GOLBERG MA, 1990, NUMERICAL SOLUTION I, P71