A NEW SPARSITY PRESERVING QUASI-NEWTON UPDATE FOR SOLVING NONLINEAR EQUATIONS

被引:21
作者
BOGLE, IDL [1 ]
PERKINS, JD [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT CHEM ENGN,LONDON SW7 2AZ,ENGLAND
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1990年 / 11卷 / 04期
关键词
D O I
10.1137/0911036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:621 / 630
页数:10
相关论文
共 19 条
[1]  
BENNETT JM, 1965, NUMER MATH, V7, P217
[2]   SPARSE NEWTON-LIKE METHODS IN EQUATION ORIENTED FLOWSHEETING [J].
BOGLE, IDL ;
PERKINS, JD .
COMPUTERS & CHEMICAL ENGINEERING, 1988, 12 (08) :791-805
[3]  
BOGLE IDL, 1983, THESIS U LONDON LOND
[4]   CONVERGENCE OF AN ALGORITHM FOR SOLVING SPARSE NONLINEAR SYSTEMS [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1971, 25 (114) :285-&
[5]  
BROYDEN CG, 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6
[6]  
CALAMAI PH, 1987, ANLMCSTM60 TECH REP
[7]  
CHEN H, 1982, NOV AICHE M LOS ANG
[8]  
Curtis A. R., 1974, Journal of the Institute of Mathematics and Its Applications, V13, P117
[9]   LEAST CHANGE SECANT UPDATES FOR QUASI-NEWTON METHODS [J].
DENNIS, JE ;
SCHNABEL, RB .
SIAM REVIEW, 1979, 21 (04) :443-459
[10]  
DENNIS JE, 1983, NUMERICAL METHODS UN