The intravenous administration of 2-deoxy-D-glucose (2-DG) to conscious catheterised rats dose-dependently increased the levels of glucose in plasma throughout the analysis (60 min); the levels of insulin in plasma remained unchanged, except for an early significant decrease in rats treated with the largest dose (1 g/kg). Pretreatment (10 min beforehand) with the beta-2-adrenoceptor antagonist, ICI 118,551 (3 mg/kg) or the alpha-2-adrenoceptor antagonist, idazoxan (1 mg/kg) decreased the rise in levels of glucose in plasma elicited by 2-DG (250 mg/kg). Conversely, the alpha-1-adrenoceptor antagonist, prazosin (1 mg/kg) or the dopaminergic receptor blocker, haloperidol (0.5 mg/kg) amplified the hyperglycaemic response to 2-DG. Previous administration of either the 5-HT1A/5-HT2 receptor antagonist, spiperone (3 mg/kg), the 5-HT1/5-HT2 receptor antagonist, methysergide (1 mg/kg), the 5-HT1C/5-HT2 receptor antagonist, ritanserin (1 mg/kg) or the 5-HT3 receptor antagonist, ICS 205.930 (0.1 mg/kg) did not affect 2-DG-induced hyperglycaemia. On the other hand, the mixed 5-HT1A/5-HT1B/beta-adrenoceptor antagonist, (-)-propranolol (5 mg/kg) and the 5-HT1/5-HT2 receptor antagonist, methiotepin (1 mg/kg), respectively, diminished and amplified the hyperglycaemia elicited by 2-DG. Lastly, in rats pretreated with prazosin (1 mg/kg, 30 min beforehand), an additional pretreatment (10 min beforehand) with prazosin or methiotepin (both at 1 mg/kg) did not further amplify the hyperglycaemic response to 2-DG. These results indicate that 2-DG-induced hyperglycaemia is mediated by alpha-2- and beta-2-adrenoceptors and amplified by alpha-1-adrenoceptor blockade. Coversely, neither 5-HT1, 5-HT2 nor 5-HT3 receptors played a role in the hyperglycaemic response to 2-DG.