LONG-TERM GENERATION OF COLONY-FORMING CELLS (CFC) FROM CD34+ HUMAN UMBILICAL-CORD BLOOD-CELLS

被引:21
作者
DURAND, B [1 ]
EDDLEMAN, K [1 ]
MIGLIACCIO, AR [1 ]
MIGLIACCIO, G [1 ]
ADAMSON, JW [1 ]
机构
[1] NEW YORK BLOOD CTR,LINDSLEY F KIMBALL RES INST,310 E 67TH ST,NEW YORK,NY 10021
关键词
COLONY-FORMING CELLS; CD34+ CELLS; HUMAN UMBILICAL CORD BLOOD; STEM CELL FACTOR;
D O I
10.3109/10428199309087003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Human umbilical cord blood cells represent a potential alternative to bone marrow as a source of stem and progenitor cells for allogeneic transplantation. Therefore, many studies are underway to evaluate the number of cord blood stem cells and their amplification potential. We analyze here the amplification potential of CD34+ cord blood cells in liquid cultures stimulated with stem cell factor (SCF) in combination with interleukin-3 (IL-3), erythropoietin (Epo) or granulocyte colony-stimulating factor (G-CSF) under serum-deprived conditions. We report that under certain circumstances (stimulation with SCF and IL-3, replacing of the medium and growth factors every 3-4 days, no change of the initial culture flask, 37-degrees-C as incubation temperature), CD34+ cells give rise to differentiated cells and progenitor cells for more than two months. During this period, more than 10(10) differentiated cells and 10(6) progenitor cells are generated from 0.25 - 1 x 10(4) CD34+ cells in the absence of a stromal layer. These data highlight the high proliferative and differentiative potential of cord blood stem cells and, because the culture procedures are relatively simple and do not require a stromal layer, open the way to the clinical use of ex vivo stem cell expansion.
引用
收藏
页码:263 / &
相关论文
共 34 条
[1]  
Dexter T.M., Allen T.D., Lajtha L.G., Conditions controlling the proliferation of haemopoietic stem cells in vitro, J. Cell. Physiol., 91, pp. 335-344, (1977)
[2]  
Dexter T.M., Moore M.A.S., Sheridan A.P.C., Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semi-allogeneic bone marrow chimeras in vitro, J. Exp. Med., 145, pp. 1672-1676, (1977)
[3]  
Hocking W.G., Golde D.W., Long-term human bone marrow cultures, Blood, 56, pp. 118-124, (1980)
[4]  
Gartner S., Kaplan H.S., Long-term culture of human bone marrow cells, Proc. Nut. Acad. Sci. USA, 77, pp. 4756-4759, (1980)
[5]  
Slovick F.T., Abboud C.N., Brennan J.K., Lichtman M.A., Survival of granulocytic progenitors in the non-adherent and adherent compartments of human long-term marrow cultures, Exp. Hematol., 12, pp. 327-338, (1984)
[6]  
Powell J.S., Fialkow P.J., Adamson J.W., Polycythemia Vera: studies of hemopoiesis in continuous long-term culture of human marrow, J. Cell. Physiol. Suppl., 1, pp. 79-85, (1982)
[7]  
Eaves C.J., Sutherland H.J., Udomsakdi C., Lansdorp P.M., Szilvassy S.J., Fraser C.C., Humphries R.K., Barnett M.J., Phillips G.L., Eaves A.C., The human hematopoietic stem cell in vitro and in vivo, Blood Cells, 18, pp. 301-307, (1992)
[8]  
Udomsakdi C., Sutherland H.J., Eaves C.J., Lansdorp P.M., Separation of functionally distinct sub-populations of primitive human hematopoietic cells using rhodamine-123, Exp. Hernarol., 19, pp. 338-342, (1991)
[9]  
Broxmeyer H.E., Douglas G.W., Hangoc G., Cooper S., Bard J., English D., Amy M., Thomas L., Boyse E.A., Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells, Proc. Nat. Acad. Sci. USA, 86, pp. 3828-3832, (1989)
[10]  
Hows I.M., Bradley G.A., Marsh J.C.W., Luft T., Coutinho L., Testa N.G., Dexter T.M., Growth of human umbilical-cord blood in long-term haemopoietic cultures, The Lancet, 340, pp. 73-76, (1992)