DIRECT INDUCTION OF G1-SPECIFIC TRANSCRIPTS FOLLOWING REACTIVATION OF THE CDC28 KINASE IN THE ABSENCE OF DENOVO PROTEIN-SYNTHESIS

被引:39
作者
MARINI, NJ [1 ]
REED, SI [1 ]
机构
[1] SCRIPPS RES INST, DEPT MOLEC BIOL, LA JOLLA, CA 92037 USA
关键词
CELL CYCLE; SACCHAROMYCES-CEREVISIAE; CDC28; TRANSCRIPTION;
D O I
10.1101/gad.6.4.557
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In Saccharomyces cerevisiae, the genes encoding the HO endonuclease, G1-specific cyclins CLN1 and CLN2, as well as most proteins involved in DNA synthesis, are periodically transcribed with maximal levels reached in late G1. For HO and the DNA replication genes, cell cycle stage-specific expression has been shown to be dependent on the Cdc28 kinase and passage through START. Here, we show that cells released from cdc28ts arrest in the presence of cycloheximide show wild-type levels of induction for HO, CLN1, and CDC9 (DNA ligase). Induction is gradual with a significant lag not seen in untreated cells where transcript levels fluctuate coordinately with the cell cycle. This lag may be due, at least in part, to association of the Cdc28 peptide with G1 cyclins to form an active kinase complex because overexpression of CLN2 prior to release in cycloheximide increases the rate of induction for CDC9 and HO. Consistent with this, release from pheromone arrest (where CLN1 and CLN2 are not expressed) in cycloheximide shows no induction at all. Transcriptional activation of CDC9 is likely to be mediated through a conserved promoter element also present in genes for other DNA synthesis enzymes similarly cell cycle regulated. The element contains an intact MluI restriction enzyme recognition site (consensus approximately 5'-A/TPuACGCGTNA/T-3'). Insertion of a 20-bp fragment from the CDC9 promoter (containing a MluI element) upstream of LacZ confers both periodic expression and transcriptional induction in cycloheximide following release from cdc28ts arrest. High levels of induction depended on both the MluI element and CDC28. These results suggest that the activity of trans-acting factors that operate through the MluI element may be governed by phosphorylation by the Cdc28 kinase.
引用
收藏
页码:557 / 567
页数:11
相关论文
共 54 条
[1]   IDENTIFICATION OF A DNA-BINDING FACTOR INVOLVED IN CELL-CYCLE CONTROL OF THE YEAST HO GENE [J].
ANDREWS, BJ ;
HERSKOWITZ, I .
CELL, 1989, 57 (01) :21-29
[2]  
ANDREWS BJ, 1990, J BIOL CHEM, V265, P14057
[3]   THE YEAST SW14 PROTEIN CONTAINS A MOTIF PRESENT IN DEVELOPMENTAL REGULATORS AND IS PART OF A COMPLEX INVOLVED IN CELL-CYCLE-DEPENDENT TRANSCRIPTION [J].
ANDREWS, BJ ;
HERSKOWITZ, I .
NATURE, 1989, 342 (6251) :830-833
[4]   THE NUCLEOTIDE-SEQUENCE OF THE DNA-LIGASE GENE (CDC9) FROM SACCHAROMYCES-CEREVISIAE - A GENE WHICH IS CELL-CYCLE REGULATED AND INDUCED IN RESPONSE TO DNA DAMAGE [J].
BARKER, DG ;
WHITE, JHM ;
JOHNSTON, LH .
NUCLEIC ACIDS RESEARCH, 1985, 13 (23) :8323-8337
[5]   MOLECULAR-CLONING, STRUCTURE AND EXPRESSION OF THE YEAST PROLIFERATING CELL NUCLEAR ANTIGEN GENE [J].
BAUER, GA ;
BURGERS, PMJ .
NUCLEIC ACIDS RESEARCH, 1990, 18 (02) :261-265
[6]   SIMILARITY BETWEEN CELL-CYCLE GENES OF BUDDING YEAST AND FISSION YEAST AND THE NOTCH GENE OF DROSOPHILA [J].
BREEDEN, L ;
NASMYTH, K .
NATURE, 1987, 329 (6140) :651-654
[7]   CELL-CYCLE CONTROL OF THE YEAST HO GENE - CIS-ACTING AND TRANS-ACTING REGULATORS [J].
BREEDEN, L ;
NASMYTH, K .
CELL, 1987, 48 (03) :389-397
[8]   A YEAST ARS-BINDING PROTEIN ACTIVATES TRANSCRIPTION SYNERGISTICALLY IN COMBINATION WITH OTHER WEAK ACTIVATING FACTORS [J].
BUCHMAN, AR ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (03) :887-897
[9]   STOICHIOMETRY OF G-PROTEIN SUBUNITS AFFECTS THE SACCHAROMYCES-CEREVISIAE MATING PHEROMONE SIGNAL TRANSDUCTION PATHWAY [J].
COLE, GM ;
STONE, DE ;
REED, SI .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (02) :510-517
[10]   FAILURE TO INDUCE A DNA-REPAIR GENE, RAD54, IN SACCHAROMYCES-CEREVISIAE DOES NOT AFFECT DNA-REPAIR OR RECOMBINATION PHENOTYPES [J].
COLE, GM ;
MORTIMER, RK .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (08) :3314-3322