FINITE-ELEMENT MODELING OF DAMAGE ACCUMULATION IN TRABECULAR BONE UNDER CYCLIC LOADING

被引:71
作者
GUO, XDE
MCMAHON, TA
KEAVENY, TM
HAYES, WC
GIBSON, LJ
机构
[1] BETH ISRAEL HOSP, CHARLES A DANA RES INST, DEPT ORTHOPAED SURG, ORTHOPAED BIOMECH LAB, BOSTON, MA 02215 USA
[2] HARVARD UNIV, SCH MED, BOSTON, MA 02115 USA
[3] HARVARD UNIV, DIV APPL SCI, BOSTON, MA 02138 USA
[4] MIT, DEPT CIVIL ENGN & MECH ENGN, CAMBRIDGE, MA 01239 USA
关键词
D O I
10.1016/0021-9290(94)90203-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A two-dimensional finite element model of an idealized trabecular bone specimen was developed to study trabecular bone damage accumulation during cyclic compressive loading. The specimen was modeled as a two-dimensional honeycomb-like structure made up of an array of hexagonal cells. Each trabecula was modeled as a linearly elastic beam element with the same material properties as cortical bone. Initial microcracks were assumed to exist within the oblique trabeculae and to grow according to the Paris law. Forces and moments were computed in each trabecula and the microcracks were allowed to propagate until fracture occurred. Between cycles, fractured trabeculae were removed from the finite element mesh, and force and moment distributions were calculated for the next cycle. This iterative process was continued until the simulated trabecular bone specimen showed a 10% reduction in modulus. Creep failure was also studied using a single cell analysis, in which a closed-form solution was obtained after prescribing the creep properties of the trabeculae. The results of the crack propagation analysis showed that fractures of only a small number of individual trabeculae can cause a substantial reduction in the modulus of the trabecular bone specimen model. Statistical tests were performed to compare the slopes and intercepts of the S-N curves of our model predictions to those of experimentally derived S-N curves for bovine trabecular bone. There was no significant difference (p > 0.2 for both slope and intercept) between our model predictions and the experimentally derived S-N curves for the low-stress, high-cycle range. For the high-stress, low-cycle range, the crack propagation model overestimated the fatigue life for a given stress level (for slope, p < 0.001), while the creep analysis agreed well with the experimental data (for slope, p < 0.2). These findings suggest that the primary failure mechanism for low-stress, high-cycle fatigue of trabecular bone is crack growth and propagation, while the primary failure mechanism for high-stress, low-cycle fatigue is creep deformation and fracture. Furthermore, our results suggest that the modulus of trabecular bone at the specimen level may be highly sensitive to fractures of individual trabeculae.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 48 条
[1]   FINITE-ELEMENT ANALYSIS OF A 3-DIMENSIONAL OPEN-CELLED MODEL FOR TRABECULAR BONE [J].
BEAUPRE, GS ;
HAYES, WC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1985, 107 (03) :249-256
[2]   REPAIR OF TRABECULAR FATIGUE FRACTURES - CADAVER STUDIES OF THE UPPER FEMUR [J].
BENAISSA, R ;
UHTHOFF, HK ;
MERCIER, P .
ACTA ORTHOPAEDICA SCANDINAVICA, 1989, 60 (05) :585-589
[3]  
Beyer W. H., 1991, STANDARD MATH TABLES, P5
[4]   MECHANICAL-PROPERTIES OF MICROCALLUS IN HUMAN CANCELLOUS BONE [J].
BLACKBURN, J ;
HODGSKINSON, R ;
CURREY, JD ;
MASON, JE .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1992, 10 (02) :237-246
[5]   CRACK VELOCITY AND FRACTURE OF BONE [J].
BONFIELD, W ;
GRYNPAS, MD ;
YOUNG, RJ .
JOURNAL OF BIOMECHANICS, 1978, 11 (10-1) :473-479
[6]   ADVANCES IN THE FRACTURE-MECHANICS OF CORTICAL BONE [J].
BONFIELD, W .
JOURNAL OF BIOMECHANICS, 1987, 20 (11-12) :1071-&
[7]  
Broek D., 1986, ELEMENTARY ENG FRACT
[8]   BONE CREEP-FATIGUE DAMAGE ACCUMULATION [J].
CALER, WE ;
CARTER, DR .
JOURNAL OF BIOMECHANICS, 1989, 22 (6-7) :625-635
[9]   COMPRESSIVE BEHAVIOR OF BONE AS A 2-PHASE POROUS STRUCTURE [J].
CARTER, DR ;
HAYES, WC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1977, 59 (07) :954-962
[10]   CYCLE-DEPENDENT AND TIME-DEPENDENT BONE-FRACTURE WITH REPEATED LOADING [J].
CARTER, DR ;
CALER, WE .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1983, 105 (02) :166-170