In this study we describe the cellular distribution of the SH2 and SH3 domains of phospholipase C-gamma (PLC-gamma) and of the adaptor protein GRB2 following their microinjection into living rat embryo fibroblasts. Using immunofluorescence microscopy, we show that a truncated protein composed of the SH2 and SH3 domains of PLC-gamma was localized to the actin cytoskeleton. A similar localization pattern was observed when only the SH3 domain of PLC-gamma was microinjected. In contrast, a truncated protein composed of only the SH2 domains of PLC-gamma exhibited diffuse cytoplasmic distribution. Microinjected GRB2 protein was localized primarily to membrane ruffles, as was GRB2 protein containing SH2 loss-of-function point mutations. Hence, the localization of GRB2 to membrane ruffles does not require interaction with tyrosine-phosphorylated moieties. However, GRB2 proteins with SH3 loss-of-function point mutations exhibited diffuse cytoplasmic distribution. These results indicate that SH3 domains are responsible for the targeting of signaling molecules to specific subcellular locations.