THE LEECH LATTICE

被引:22
作者
BORCHERDS, RE
机构
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1985年 / 398卷 / 1815期
关键词
D O I
10.1098/rspa.1985.0039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:365 / 376
页数:12
相关论文
共 7 条
[1]   23 CONSTRUCTIONS FOR THE LEECH LATTICE [J].
CONWAY, JH ;
SLOANE, NJA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1781) :275-283
[2]   THE AUTOMORPHISM GROUP OF THE 26-DIMENSIONAL EVEN UNIMODULAR LORENTZIAN LATTICE [J].
CONWAY, JH .
JOURNAL OF ALGEBRA, 1983, 80 (01) :159-163
[3]   THE COVERING RADIUS OF THE LEECH LATTICE [J].
CONWAY, JH ;
PARKER, RA ;
SLOANE, NJA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 380 (1779) :261-290
[4]   A CHARACTERISATION OF LEECHS LATTICE [J].
CONWAY, JH .
INVENTIONES MATHEMATICAE, 1969, 7 (02) :137-&
[5]   LORENTZIAN FORMS FOR THE LEECH LATTICE [J].
CONWAY, JH ;
SLOANE, NJA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (02) :215-217
[6]  
Venkov B.B., 1980, P STEKLOV I MATH+, V148, P63
[7]  
VINBERG EB, 1975, DISCRETE SUBGROUPS L, P323