IMMOBILIZED METAL-ION AFFINITY-CHROMATOGRAPHY - EFFECT OF SOLUTE STRUCTURE, LIGAND DENSITY AND SALT CONCENTRATION ON THE RETENTION OF PEPTIDES

被引:91
作者
BELEW, M
PORATH, J
机构
[1] UNIV UPPSALA, CTR BIOMED, INST BIOCHEM, S-75123 UPPSALA, SWEDEN
[2] UNIV UPPSALA, CTR BIOMED, CTR BIOCHEM SEPARAT, S-75123 UPPSALA, SWEDEN
来源
JOURNAL OF CHROMATOGRAPHY | 1990年 / 516卷 / 02期
关键词
D O I
10.1016/S0021-9673(01)89275-X
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The adsorption characteristics of a variety of synthetic peptide hormones and di-, tri- and tetrapeptides on Cu(II) immobilized on two commercially available high-performance chelating gels run under various experimental conditions are described. Methods for determining the concentration of immobilized Cu(II) in situ are also described. The Cu(II)-charged columns exhibit a net negative charge as judged from the significantly higher retention of some basic peptides in the absence of NaCl in the equilibration and elution buffers. At higher NaCl concentrations (2-4 M), aromatic interactions seem to be superimposed on the metal ion affinity characteristics of the peptides. The relationship between resolution of peptides and the concentration of immobilized Cu(II) ions has also been established for the Chelating Superose gel where 40 μmol Cu(II) ml-1 gel apparently gives the optimum resolution. The nature of the gel matrix also plays a role in the resolution of some peptides, the extent of which is difficult to predict. The results obtained also suggest that peptides containing aromatic and hydroxy amino acids are retarded more than those which lack them. Moreover, these same amino acids apparently strengthen the existing strong binding of peptides containing His, Trp or Cys to a Chelating Superose-Cu(II) column. Dipeptides with C-terminal His (i.e., X-His) are neither bound nor retarded on a column of Chelating Superose-Cu(II) whereas those having the structure His-X are strongly bound. Some tri- and tetrapeptides containing His were also found not to bind to the column. The underlying cause of this anomalous adsorption behaviour is discussed and is ascribed to "metal ion transfer" arising from the relatively higher affinity of such peptides towards immobilized Cu(II) ions than the chelator groups (iminodiacetate) which are covalently bound to the gel matrix. © 1990.
引用
收藏
页码:333 / 354
页数:22
相关论文
共 30 条